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1. Introduction 
One of the possible fault-detection techniques 

is static analysis. This analysis concerned 
evaluating a system and its components based on a 
code, forms, data structures, documentation 
without program execution. Inspections are an 
example of static analysis that relies on code 
rewires. The other possibility is using of automated 
tools for that purpose. These tools help us to reduce 
code errors such as runtime exception, redundant 
code, inappropriate use of variables, division by 
zero and potential memory leaks. We defined the 
use of automated static analysis (ASA) tools and 
Inspections that mean manual code review. ASA 
may help software engineers to fix faults in 
software test process. In this paper we report the 
result of using static analysis procedures as a fault 
detection technique in students’ projects. 

The study was a research that analyzed 500 
students’ projects in Technical University of Sofia, 
Computer System Department. Since 1996 we 
collect, inspect and analyze by ASA tools over 9 
million lines of code (LOC). In our research we 
examine software projects written in C/C++ that 
underwent various combinations of inspection and 
ASA. We used Goal-Question-Metric (GQM) to 
motivate and focus our data collection and analysis. 

 
2. Background 

In this section we provide an overview of ASA 
tools and classes of faults and failures that are most 
often detected by ASA and by inspectors. 

 
2.1. Automated Static Analysis Tools 

ASA can be used as an added fault-detection 
filter in software development process. ASA tools 
automate the identification of certain types of 
anomalies, as discussed above, by scanning and 
parsing source text of a program to look for a fixed 

set of patterns in the code. ASA utilizes control 
flow and data flow analysis, interface and 
information flow analysis of the source code. There 
are some errors that are never detected by ASA 
tools [5, 6]. Addit ionally every ASA tool generates 
different, sometimes no overlapping, errors [7]. 

The important benefit of ASA is that they do 
not require code execution for bug tracking. In this 
case ASA is opposite to the language compilers. C 
language doesn’t have strong type checking and the 
compiler can omit some errors. They can be 
trapped by ASA tools. 

There are range of ASA tools and services 
deployed for C/C++ programs. One of these 
products is FlexeLint [1]. It will check C/C++ 
source code and find bugs, glitches, inconsis-
tencies, non-portable constructs, redundant code, 
and much more. It  looks across mult iple modules, 
and so, enjoys a perspective your compiler does not 
have. FlexeLint is a Unix-based tool and there is 
also Windows-based version: PC-Lint. The result 
of the tool working is demonstrated on figure 1. 

The other good ASA tool is Reasoning [2]. Its 
services boost the productivity of development 
teams by uncovering security vulnerabilit ies and 
reliability defects before they become costly 
problems. This tool finds defects in C/C++ 
applications. Reasoning’s Discovery Mapping 
Analytics Service (DMA) is an analysis of users’ 
source code using static analysis techniques and 
Reasoning’s expertise in identifying 
Implementation Defects. The tool process users’ 
code through various static analysis engines and 
analyze the results to benchmark the quality level 
of each component of the application. 

The followed metrics are embedded into 
Reasoning: 
 Metrics for Priorit ization – Using Reasoning’s 

Discovery Mapping Analytics service, the 
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engineering managers will have the information 
to recognize and priorit ize the most problematic 
application modules and direct engineering 
resources for improved effectiveness and more 
predictable results. 

 Metrics for Risk Management – Reasoning’s 
Discovery Mapping Analytics service maps 
implementation errors that cause system crashes 
or security vulnerabilit ies. With this mapping, the 
user can significantly enhance risk assessment 
and management capability, with improved 
priorit ization, calibration and predictability. 
Improvements in process for discovering defects 
will improve the ability to manage the risk of 
killer defects gett ing to customers. 

 Metrics for Code Integrity Benchmarking – 
Reasoning’s Discovery Mapping Analytics 
service is a unique addit ion to your management 
dashboard, providing quality benchmarks. 
Reasoning’s DMA service provides an unbiased, 
third-party assessment of code reliability and 
vulnerability. The DMA results show how users’ 
code characterist ics compare to those of some of 
the world’s largest development organizations. 
Once measured, the user can compare: results of 

a quality init iat ive over the lifecycle steps of an 
application, use of different methodologies, team 
structures, training protocols, etc. 

Reasoning DMA service provides metrics, 
giving the dashboard measurements that let manage 
quality init iat ives effectively. Some of the possible 
error tracking with Reasoning are: NULL pointer 
assignment, out of array access bounds, memory 
leaks, bad deallocation and uninit ialized variables. 

The last tool present in our work is Klocwork 
K7 [3]. Its static analysis (see figure 2) is the most 
mature, scalable solution on the market, enabling 
accurate and efficient defect detection early in user 
process. K7 can be deployed both at the developer 
desktop and at a full system build t ime, ensuring 
full coverage of users code problems and enabling 
integration static analysis best practices in a way 
that best suits your development processes. 

 
Klocwork K7 has two main functions: 

� Operational Defect Detection and Removal 
K7 provides user’s development team with a 

mult i-dimensional analysis of fundamental defect 
categories. It  is designed for ease-of-use build-
over-build with features such as a build and report 

Figure 1. Simple C++ example and FlexeLint output 



Quality Code Analysis in Students’ Projects 

 RECENT, Vol. 8, nr. 2 (20), July, 2007 103 

management GUI, industry leading message 
filtering, flexible configuration, and the powerful 
learning and tuning knowledge base. To do this, K7 
analyzes C, C++, and Java source code and 
provides a summary of code problems, including 

defects, security vulnerabilit ies, architectural 
foundation issues, and metrics. It  highlights the 
crit ical problems and separates them from the non-
crit ical problems (see figure 3), allowing the team 
to assess the reported issues and decide whether to 
fix them or filter them. See table 1 for list of defect 
categories.  

 

� Defect Detection and Prevention 
The challenge for organizations that build or 

maintain large applications is to identify defects as 
early as possible in the development cycle (see 
figure 4). A defect that is identified and corrected 
while the developer is writ ing the code has a cost 
that is orders of magnitude lower than correcting 
the same defect in any of your existing test phases 
or once the product is released. 

For years, the benefits of finding software 

Figure 2.  
Klocwork static 

analysis  
technology 

Figure 3. Integrating K7 into Eclipse IDE 

Table 1. Defect Categories List for C/C++ and Java languages 
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defects before QA have been well documented and 
understood. Unfortunately, the only mechanisms 
available to do this efficiently have been either 
manual code reviews and/or lint-type static code 
analyzers. Both these approaches do have their 
benefits but suffer from various inefficiencies, least 
of which is an ability to establish good coverage of 
a large code base. 

Now, with the advancement of static code 
analysis technology, potentially catastrophic 
defects can be found automatically and accurately. 
These problems will be identified early in the 
development process since static analysis does not 
require running code – it  can operate even before 
user compile and integrate software. The removal 
of these problems improves the quality of software, 
while enhancing developer productivity. 

In this study we used Basil taxonomies as 
appropriate for students’ project assessment. 

 
3. Case Study Details 

In this section we explain how to collect the 
students work and some limitation to our research. 

 
3.1. Data Collection 

We collected and analyzed faults into 500 
students’ projects during last twelve years. Data 
analysis consists of faults for above nine million 
LOC written in C/C++, developed by bachelor and 
master of computer science students. In our 
analysis we discussed three cases: projects with 
inspections, projects with ASA tools testing at first 
step and inspections at second, and projects with 
inspections first and ASA tool testing after that. 
For our research purpose we used different ASA 
tools, as shown in table 3. In this study the number 
of errors found by FlexeLint is two t imes than 
errors found by Klocwork K7, and four t imes than 
errors found by Reasoning. Therefore we based our 

analysis on FlexeLint results. 
We denoted students’ projects as SP and 

defined three product versions: SP1.0 that have 
only handle inspections, SP1.1 and SP1.2 that are 
different in ASA tools but have ASA tool testing 
and inspections too. 

 
3.2. Limitations 

There are some limitations in our research. We 
used ODC taxonomies to classify errors. Next 
classification is done without information about 
severity or impact of potential failure. Addit ionally 
our study focused only three ASA tools and isn’t 
representative of all ASA tools. Finally, the result 
isn’t representative for programmers fault and it 
may be different for projects, created in other 
languages than C/C++. 

 
4. Results 

In this section we provided the achieve results. 
We divided them into five categories, given in 
sections 4.1 - 4.5. The basic goal is to determine 
whether ASA tools can help to students to improve 
their programming techniques and to see what kind 
of errors are most frequently occurred in students’ 
projects. Each section started with a base question 
and short explanation of a used metrics to answer 
to the question in it . Using of GQM in each section 
help us to collect and analyze data. All of data 
analysis, implication of it  are posted and discussed. 

 
4.1. Student’s Project Quality 

The question that is important in this section 
is: “Will a student’s project be of higher quality if 
ASA tool is using in development process?” 

To answer to this question we used:  
 quantity of defects found by system testing; 
 quantity of defects found by our testing. 

Divided by churned thousand lines of code 
(KLOC). The results were shown in table 4. Project 
quality comparison based on a number of total 
failures per churned KLOC (KLOCC). In the table 
we used SP1.0 as a baseline project for 
comparison. We normalized the failures per 
KLOCC metrics relatively to the SP1.0 projects. 
This gives us relative quality of SP projects. 

There is a wide variance in the relative quality 

Figure 4. Area of bug tracking 

Table 3. Data Analysis 
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of the projects. As a result, our analysis didn’t 
provide conclusive results about whether ASA 
tools will help to increase the SP projects quality. 

 
4.2. Fault Detection Yield 

The question that we asked in this section is: 
“ How effective is ASA at detecting faults compared 
with inspections and testing?” 

To answer to this question we used: 
 quantity of ASA faults; 
 quantity of inspection faults; 
 quantity of test failures. 

Fault detection yield (FDY) refers to the 
percentage of defects, present in the code at the 
t ime of fault detecting practice [10]. FDY can’t be 
precisely computed until the project is used 
extensively by the users. This measure decreased as 
more bugs are found. Addit ionally we calculated 
defect removal efficiency (DRE) [11] as a measure 
of how well bugs are removed. Software defect 
removal efficiency is percentage of total bugs 
eliminated in the code. High level of defect 
removal efficiency is corresponding to high level 
of user satisfaction. 

For SP1.2 ASA performed during test, for 
SP1.1 ASA performed prior to inspection. No ASA 
test is done for SP1.0. The results are shown in 
table 5. For project SP1.2 the faults detections yield 
of test is relatively low, because ASA was 
performed during test. However DRE for project 
SP1.2 is 99.5%, which is approximately the same 
as the other projects. Research indicates that the 
user can receive high quality project, if the result is 
greater than 95% [11, 12]. The value of DRE is 
higher than industrial benchmark and this fact 
indicated high quality of software project. 

These results indicate that defect removal 
yield of ASA isn’t significantly different from that 
of inspections. The defect removal yield of 
execution-based testing is two times higher than 
that of ASA and therefore may be more effective 
at finding the defects.  

4.3. Classes of Faults and Failures 
The main questions discussed in this section 

are: “What classes of faults and failures are most 
often detected by ASA, by inspection and by system 
testing? What classes of defects are escaped to the 
customers?” 

To answer to them we used: 
 quantity of ASA faults by ODC type; 
 quantity of inspection faults by ODC type. 

We counted faults according to ODC type 
classification. Here we will present the results from 
each metrics. 

 

4.3.1. ASA Faults 
Each fault was documented with a problem 

explanation and detailed information such as: 
description, location, precondit ion, impact, severity, 
suggestion and code fragment. Then every fault 
was manually classified according to ODC types. 
Finally faults were counted and percentages are 
calculated. A summary of the results are shown in 
table 6. Only FlexeLint is included in comparison. 

The result shown in table 6 indicated that 
ASA tools are effective for identifying two ODC 
types: Assignment and Checking. Checking 
defects are happen in low level design or coding 
phases and Assignments were occurred only in 
coding phase. These problems are due to logical 
than static analysis. 

 
4.3.2. Inspection Faults 

All inspection faults are documented in text 
file. Every inspection file was manually created 
and classified according ODC types. The result of 
this classification is shown in table 7. Note that in 
handle inspection some addit ional properties are 
documented: readability of code, maintainability, 
naming convention, coding standards and 

Table 4. Relative SP Projects Quality 

Table 5. Defect Removal Yield 

Table 6. ASA faults classification according to ODC 
taxonomies 
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programming style. These comments are 
approximately 25% of statements in inspection 
records. They are not included in ODC taxonomies.  

The results show that inspection identifies 
Algorithm, Documentation and Checking faults. 
Approximately 85% of all faults belong to these 
three categories and the distribution is constant 

regardless of whether or not ASA tests are 
performed. 

 
4.4. Programmer Errors 

The questions discussed in this section are: 
“ What kind of programmer errors is most 
frequently identified by ASA? How often does ASA 
find these errors?” 

To answer to them we used:  
 quantity of ASA faults by defect type 

To avoid differences in defect types among 
different tools, only one ASA is used. We choose 
FlexeLint, because it identified most defect types 
from examined ASA tools. Then we merged the 
same and very similar static analysis fault to 
performed result aggregation. The result is shown 
in table 8. All data are ranked with most frequently 
faults at the top of the list. FlexeLint can detect 

Table 7. Inspection faults classi fication 

Table 8. Detailed classification of static analysis faults ordered by Total occurred time 
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ASA help us to trap programming errors that have 
potential to cause security vulnerable?” 

To answer to it  we used the followed metric: 
 quantity of ASA faults by defect type. 

We used static analysis tools for security 
vulnerable checking according [13, 14]. We 
highlighted the programmer’s error, found by ASA 
that can potentially cause vulnerable. The results 
are present in table 10. These types of programmer 
errors have been documented by [15] as attacks. 
ASA tools have no context information and may 
produce wrong results sometimes. 

The results indicate that ASA can be used to 
find security vulnerable errors. 

 
5. Conclusions 

To examine the quality of automated static 
analysis tools, we inspect three ASA tools. In this 
research we gather information about ASA tools 
fault detection, manually inspection faults and 
system testing failures in students’ projects. Our 
analysis provides some results that are shown in 
Section 4. Using the received results we can 
conclude: 
 The defect removal yield of ASA isn’t 

significantly different from that of inspections. 
The defect removal yield of execution-based 
testing is two t imes higher than that of ASA and 
therefore may be more effective at finding the 
defects. 

more than 800 bugs, but only 33 were found in 
students’ projects. The faults were given one of the 
following severity levels, based on potential 
failure:  
 Critical  – this fault can cause application dump, 

service outage, system reboot; 
 Major  – this fault can cause segmentation fault, 

memory leaks, resource leaks, data corruption; 
 Minor  – this fault may result in unexpected 

behavior; 
 Coding standard – code that violates coding 

standard and reduced readability and 
maintainability of the project. 
The results are consistent with the 80-20 rule/

Pareto Principle, i.e. a great majority of the faults 
identified by few key programmer errors, as 
shown in table 9. “Possible use of NULL pointer” 
is most frequently error, identified by ASA – 
approximately 47% of all faults. About 92% of 
faults are focused on 10 fault types. To improve 
the code quality we will used this information in 
future educations to point the students what kind of 
programmer errors are most often happen in their 
projects. 

There are some addit ional limitations on this 
research. First ASA tool outputs are screening. 
Second, assigning of severity level is a manually 
operation and is subjective. 

 
4.5. Identification of Security Vulnerabili ties 

The question discussed in this section is: “Can 

Table 9. Pareto Effect in ASA Faults 
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 The ASA tools are effective for identifying two 
ODC types: Assignment and Checking. 

 The inspection identifies Algorithm, 
Documentation and Checking faults. 

 The great majority of the faults identified by few 
key programmer errors. 

 “Possible use of NULL pointer” is most often 
fault, identified by ASA – approximately 47% 
of all faults. 

 About 92% of faults are focused on 10 fault 
types. 

 The ASA tools can be used to find security 
vulnerable errors. 
In conclusion results indicate that ASA tools 

are economical complement to other testing 
techniques. 
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