QUALITY CODEANALYSIS IN STUDENTS’' PROJECTS

Daniela GOTSEVA, Ognian NAKOV, Luka BEKIAROV
Technical University of Sofia

Abstract. In this study we focused on three ASA tools for €programs. Ater short ASA tools description, we
examine the faults identified by ASA tools, manurapections and system failure testing. Additionale categorize
raw output fom ASA tools that help us to make damions about the efficiency of static analysissoftware fault
detection in students’ projects. We analyze 50@esttiprojects during the last 12 years.

Key words: static analysis, bug reviews, C/C++ and Java progring

1. Introduction set of pattems in the code. ASA utilizes control
One of the possible fault-detection techniquesflow and data flow analysis, interface and
is static analysis. This analysis concernetinformation flow analysis of the source code. There
evaluating a system and its components based onare some errors that are never detected by ASA
code, forms, data structures, documentatioitools [5, 6]. Additionally every ASA tool generates
without program execution. Inspections are a different, sometimes no overlapping, errors [7].
example of gatic analysis that relies on cod The important benefit of ASA is that they do
rewires. The other possibility is using of autondate not require code execution for bug tracking. Irsthi
tools for that purpose. These tools help ustoaedu case ASA is opposite to the language compilers. C
code errors such as runtime exception, redunda Janguage doesn’t have strong type checking and the
code, inappropriate use of variables, division bycompiler can omit some errors. They can be
zero and potential memory leaks. We defined th trapped by ASA tools.
use ofautomated static analysiA\SA) tools and There are range of ASA tools and services
Inspectionsthat mean manual code review. ASA deployed for C/C++ programs. One of these
may help software engineers to fix fauts inproducts is FlexeLint [1]. It will check C/C++
software test process. In this paper we report thsource code and find bugs, glitches, inconsis-
result of using static analysis procedures as I fattencies, non-portable constructs, redundant code,
detection technique in students’ projects. and much more. It looks across multiple modules,
The study was a research that analyzed 5Cand so, enjoys a perspective your compiler does not
students’ projects in Technical University of Sofia have. FlexeLint is a Unix-based tool and there is
Computer System Department. Since 1996 wialso Windows-based version: PC-Lint. The result
collect, inspect and analyze by ASA tools over ¢of the tool working is demonstrated on figure 1.
million lines of code (LOC). In our research we The other good ASA tool is Reasoning [2]. Its
examine software projects written in C/C++ thatservices boost the productivity of development
underwent various combinations of inspection anteams by uncovering security vulnerabilities and
ASA. We used Goal-Question-Metric (GQM) to reliability defects before they become costly
motivate and focus our data collection and analysitproblems. This tool finds defects in C/C++
applications. Reasoning’'s Discovery Mapping

2. Background Analytics Service (DMA) is an analysis of users’
In this section we provide an overview of ASA source code using static analysis technigues and
tools and classes of faults and failures that aetm Reasoning’s expertise in identifying
often detected by ASA and by inspectors. Implementation Defects. The tool process users’
code through various static analysis engines and
2.1. Automated Static Analysis Tools analyze the results to benchmark the quality level

ASA can be used as an added fault-detectioof each component ofthe application.
filter in software development process. ASA tools The followed metrics are embedded into
automate the identification of certain types ofReasoning:
anomalies, as discussed above, by scanning a® Metrics for Prioritization — Using Reasoning’s
parsing source text of a programto look for adixe Discovery Mapping Analytics service, the

RECENT, VOL. 8, nr. 2 (20), July, 2007 101

Quality Code Analysis in Students’ Projects

if Source file: simple.cpp
1 #include <string.h>

2
3 class X
4 {
5 int *p;
6 public:
7 X
8 { p = new inc[20]; }
9 wold initc()
10 [memset(p, 20, 'a' 1:}
11 ~M
12 { delete p:; }
13 }:
14
Quiput

Flexelint for C/C+4=+ (Unix) Vers. 8,00u, Copyright Gimpel Software 1985-2006

-=-- Module: sinple. cpp (C++)
{ p = new int[20]: }
gimple.cpp & Info 1732: nmew in constructor for class 'X' which
has no assighunent operator
gimple.cpp & Info 1733: mew in constructor for class 'X' which
has no copy constructor

{ memset{ p, 20, 'a')i }
Simple.cpp 10 Warning 669: Possible data overrun for function
'memset(void *, int, unsigned long)', argument 3 (2ize=97) exceeds argquuent
1l (size=80) [Reference: file simple.cpp: lines 8, 10]
simple. cpp Info 631: Reference cited in prior message
gimple. cpp 0 Info B831l: Reference cited in prior message

{ delete p; }
simple.cpp 12 Warning 424: Inappropriate deallocation (delete]
for 'mew[]' data

—-— Wrap-up for Module: simple.cpp

Info 753: local class 'X' (line 3, file simple.cpp] not
referenced

simple.cpp 3

Info B830: Location cited in prior message

=== Global Wrap-up

Info 1714: Memher function
not referenced
gimple.cpp 9 Info 630: Location cited in prior message

'¥:iinic(woid) " (line 9, file simple.cpp)

Figure 1. Simple C++ example and FlexeLint output

engineering managers will have the informatior
to recognize and prioritize the most problematic
application modules and direct engineering
resources for improved effectiveness and mor

a quality initiative over the lifecycle steps of an
application, use of different methodologies, team
structures, training protocols, etc.

Reasoning DMA service provides metrics,

predictable results. giving the dashboard measurements that let manage
Metrics for Risk Management — Reasoning’s quality initiatives effectively. Some of the podsib
Discovery Mapping Analytics service maps error tracking with Reasoning are: NULL pointer
implementation errors that cause system crash assignment, out of array access bounds, memory
or security vulnerabilities. With this mapping, the leaks, bad deallocation and uninitialized variables
user can significantly enhance risk assessme The last tool present in our work is Klocwork
and management capability, with improvec K7 [3]. Its static analysis (see figure 2) is thesn
prioritization, calibration and predictability. mature, scalable solution on the market, enabling
Improvements in process for discovering defect accurate and efficient defect detection early ir us
will improve the ability to manage the risk of process. K7 can be deployed both at the developer
killer defects gettingto customers. desktop and at a full system build time, ensuring
Metrics for Code Integrity Benchmarking — full coverage of users code problems and enabling
Reasoning's Discovery Mapping Analytics integration static analysis best practices in a way
service is a unique addition to your managemer that best suits your development processes.
dashboard, providing quality benchmarks

Reasoning’'s DMA service provides an unbiasec Klocwork K7 has two main functions:

third-party assessment of code reliability anc» Operational Defect Detection and Removal
vulnerability. The DMA results show how users’ K7 provides user’s development team with a
code characteristics compare to those of some multi-dimensional analysis of fundamental defect
the world’'s largest development organizations categories. It is designed for ease-of-use build-
Once measured, the user can compare: results over-build with features such as a build and report

102 RECENT, \VoI. 8, nr. 2 (20), lulie, 2007

Quality Code Analysis in Students’ Projects

Analysis Type

Reporting
e
Enhanced Metrics
Structural
Data Flow

Control Flow

Syntax & Semantic J

Roll over the analysis type to get more information

management GUI, industry

Figure 2.
Klocwork static
analysis
technology

defects, security vulnerabilities, architectural
foundation issues, and metrics. It highlights the
critical problems and separates them from the non-
critical problems (see figure 3), allowing the team
to assess the reported issues and decide whether to
fix them or filter them. See table 1 for list offelet
categories.

» Defect Detection and Prevention

The challenge for organizations that build or
maintain large applications is to identify defeats
early as possible in the development cycle (see
figure 4). A defect that is identified and corrette

leading messagiwhile the developer is writing the code has a cost
filtering, flexible configuration, and the powerful that is orders of magnitude lower than correcting
learning and tuning knowledge base. To do this, Kthe same defect in any of your existing test phases
analyzes C, C++, and Java source code aroroncethe product is released.

provides a summary of code problems, including For years, the benefits of finding software

Table 1. Defect Categories List for C/C++ and Janguages

Sample C/C++ Defect Categories

Sample Java Defect Categories

Null Pointer Dereference

Efficiency Errors (e.g. Empty finalize method)

Memory Management Problems {e.g.

Memory Leak)

Maintainability {e.g. Empty catch clauses)

Array Bounds Violations

Reliability {e.g. Resource Leaks)

Use of Uninitialized Data

Coding Style Issues (e.g. Assignment in Condition)

& Java - ViewDatabase. jova - Eclipse Platio
Ble Rt Souce Refsctor Peagets Saarch Pr
it A S R

= 3 WebGoat

+- [{defaul package)
I lessons. admin
i ses=on
I wi
+ B, WE Syshem Library [Javaldl]
+-g Ra-spect 014 - ClDocuments and 54
4+ g cabaling jar - Co\Dotuments and Settings
+ gl commons-digester . jar - CDocuments ans
+ g eos-1o42jar - CADocuments and Setting
* gl ke - CiiDoouments and Sattngs!bors
+ g 12h.jar - C:\Documents and Sattings\bgr
+ogm fPesjar - EjRedbeel A1

R S

i

ot Bun Widow Help

0-9- 1

il ss connea
| 56]

8 Statemsnt
it Reaultdec

| 61 if | [ces
82 '
63 GeEELas
L Re=zult
| ss ec.add

<

B InForce Error Dutads 0

Troce: Error:5H, 5001 504 Enjection. Snk is taString(), Source ks petFarameteryalues(l. Liser nput is used unchecked in 50U statements
executed on & datsbase. The can be sxplofed bo nject adbitrary SO0 statements.

tion = Databaseltilities.makefonnection| = }; L8]

=tatement = connection.createScatemsnt (Resulciec . TYPE
ERSULLE ™ STATESEND.SMecuUtaCuUsEy(Bglicatsmant . COSTELN

ults != null | & | resules.firat() == troe | |

sonTracksr | &).sctlompleted] btrue];
SetMetalats resultsHetalata = results.getMetalata()r
Elesentc | DacabaseUciliciesa.wriceTable[resulta, ceadlt

w
>

=0

= 3 lesconsladmin]iewbistshacs, java: 59

e hoSkringd) ok lessons. adirin, VDb abuss, crestaConberk{ ViswDal sbass. v S0

+ & solttabement ot lessors, sdmin ViewDakabase croateConbent ViewDistabase. brvacs)

+ o e ot lessors, sdmin VewDaet shase crasteConbent{ViewDat shase, Javacit)

* ul QEtR s Pr siwitar() ot brisivs. atksin, VisnDat shase createCornent(Vien Dl e e 46)

+ el getRawPEraTester() b SHERON P ETELerP u AT GELR i ot st P ar st e Par ot e STO)

+ s vl (V] 8t seccion, Paramsterf s, gebRL e smeber(Par smster Parsar, javs859%) o)

15 InForce Erors 10 - Problems | Jyvadoc
Found 312 iams (Fiter matched 237 bama)

Search Progress Declarstion Tacks | Cal Heranchy =0

| Description

| Resource | Location | sewerty | Status -~

@ 5,500 50U Injechion, Sink s boString().

3 V.0L.0EV: Applcation i revealng design information bac... lessonslademin/UserAdmen,,, 59 Error Fix

3 5V, SHARED.WAR: Ureynichronened scoess bo stabic varisbl.,, lewsons [adenn/Usarddn.,, 44 Error Anshyre

0 Sy.055 REF: Sk bs tofting(). Source & petParameterval. lessonsfadminfRepotCar... 287 Erro Fix

O Sv.ILDEV: Appboation i rewssing dergn infemation bac.,, BsonslsdenRefreshDB.,, 71 e Fe

B SV.ILDEV: Apkeation i revasling desigh nformation bat.,, kssonsladenRefreshDE., 169 Error Fix

r] W SHASFTE VAR - v hinnered arress b stabie vl Rasaransd e (Radfr e 180 Frrew fanahore]

<

Source i getPar... lessonsledewn/ViewDuatab. .. 59 Errow P

Figure 3. Integrating

K7 into Eclipse IDE

RECENT, \ol. 8, nr. 2 (20), July, 2007 103

Quality Code Analysis in Students’ Projects

Table 3. Data Analysis

found in

this phase
W s Costto

repair defect

in this phase

Project ASA Inspections
85% o
Version
¢ . Defocts SP1.0 Not performed Yes
z introduced SP1.1 FlexeLint, Reasoning Yes
f nthis phase SP1.2 FlexeLmt, Klocwork Yes
= % Defects
c

analysis on FlexeLint results.

We denoted students’ projects as SP and
defined three product versions: SP1.0 that have
only handle inspections, SP1.1 and SP1.2 that are
different in ASA tools but have ASA tool testing
and inspectionstoo.

$25

Coding Unit Function Field Post
Test Test Test Release

Source: Applied Software Measurement, Capers Jones, 1996

Figure 4. Area of bug tracking 32 Limitations

defects before QA have been well documented ar There are some limitations in our research. We
understood. Unfortunately, the only mechanism used ODC taxonomies to classify errors. Next
available to do this efficiently have been eithelclassification is done without information about
manual code reviews and/or lint-type static cod severity or impact of potential failure. Additiohal
analyzers. Both these approaches do have thiour study focused only three ASA tools and isn't
benefits but suffer from various inefficienciesase representative of all ASA tools. Finally, the résul
of which is an ability to establish good covera@e o0 jsn’t representative for programmers fault and it
a large code base. may be different for projects, created in other
Now, with the advancement of static codelanguages than C/C++.
analysis technology, potentially catastrophic
defects can be found automatically and accuratel 4, Results
These problems will be identified early in the In this section we provided the achieve results.
development process since static analysis does r ywe divided them into five categories, given in
require running code — it can operate even befol sections 4.1 - 4.5. The basic goal is to determine
user compile and integrate software. The removiwhether ASA tools can help to students to improve
of these problems improves the quality of software thejr programming techniques and to see what kind
while enhancing developer productivity. of errors are most frequently occurred in students’
In this study we used Basil taxonomies a:projects. Each section started with a base question
appropriate for students’ project assessment. and short explanation of a used metrics to answer
to the question in it. Using of GQM in each section
3. Case Study Details help us to collect and analyze data. All of data
In this section we explain how to collect the analysis, implication of it are posted and discdisse
students work and some limitationto our research.
4.1.Student’s Project Quality
3.1. Data Collection The question that is important in this section
We collected and analyzed faults into 50Cis: “Will a student’s project be of higher quality if
students’ projects during last twelve years. Dat ASA tool is using in development process?”
analysis consists of faults for above nine millior To answer to this question we used:
LOC written in C/C++, developed by bachelor anc e quantity of defects found by system testing;
master of computer science students. In ol e quantity of defects found by our testing.
analysis we discussed three cases: projects wi Divided by churned thousand lines of code
inspections, projects with ASA tools testing astfir (KLOC). The results were shown in table 4. Project
step and inspections at second, and projects W' quality comparison based on a number of total
inspections first and ASA tool testing after that. failures per churned KLOC (KLOCC). In the table
For our research purpose we used different ASwe used SP1.0 as a baseline project for
tools, as shown in table 3. In this study the numbe comparison. We normmalized the failures per
of errors found by FlexeLint is two times than KLOCC metrics relatively to the SP1.0 projects.
errors found by Klocwork K7, and four times than This gives us relative quality of SP projects.
errors found by Reasoning. Therefore we based o There is a wide variance in the relative quality

104 RECENT, \VoI. 8, nr. 2 (20), lulie, 2007

Quality Code Analysis in Students’ Projects

Table 4. Relative SP Projects Quality 4.3.Classes of Faults and Failures
Project | Relative Quality | Process Process The main questions discussed in this section
(ﬁj&esl il step = are: “What classes of faults and failures are most
P10 To Fpechionn ofte_n detected by ASA, by inspection and by system
SP1.1 132 ASA Inspections testing? What classes of defects are escaped o the
SP1.2 0.41 Inspections ASA customers?
of the projects. As a resulbur analysis didn’t To answer to them we used:

provide conclusive results about whether ASA ® quantity of ASA faults by ODCtype;

tools will help 1o increase the SP projects qualit ~ ® duantity of inspection faults by ODC type.
We counted faults according to ODC type

4.2 Fault Detection Yield classification. Here we will present the resultir

The question that we asked in this section ic€ach metrics.
“How effective is ASA at detecting faults compare

with inspections and testingy? 4.3.1. ASA Faults

To answer to this question we used: Each fault was documented with a problem
¢ quantity of ASA faults; explanation and detailed information such as:
e guantity of inspection faults; description, location, precondition, impact, seyeri
e quantity of test failures. suggestion and code fragment. Then every fault

Fault detection yield (FDY) refers to the was manually classified according to ODC types.
percentage of defects, present in the code at ttFinally faults were counted and percentages are
time of fault detecting practice [10]. FDY can't be calculated. A summary of the results are shown in
precisely computed until the project is usectable 6. Only FlexeLint is included in comparison.
extensively by the users. This measure decreased

o Table 6. ASA faults classification according to ODC
more bugs are found. Additionally we calculatec

defect removal efficiency (DRE) [11] as a measurt ODC taxonomy taxonomls; T%) | SP12 %%
of how well bugs are removed. Software defec Assigﬁnm : :
removal efficiency is percentage of total bugs w ~ Ajltools R0 20
eliminated in the code. High level of defect| m FlexeLint including 61 78
removal efficiency is corresponding to high levell Checking
of user satisfaction. B Alltools 20 20

For SP1.2 ASA performed during test, for| ™ FlexeLint including 50 25
SP1.1 ASA performed prior to inspection. No ASA L Other ODC taxonomes L 0
test is done for SP1.0. The results are shown i The result shown in table 6 indicated that

table 5. For project SP1.2the faults detectiorklyi ASA tools are effective for identifying two ODC
of test is relatively low, because ASA was types: Assignment and Checking.Checking
performed during test. However DRE for project defects are happen in low level design or coding
SP1.2 is 99.5%, which is approximately the sam phases and Assignments were occurred only in
as the other projects. Research indicates that ttcoding phase. These problems are due to logical
user can receive high quality project, if the re@mil than static analysis.
greater than 95% [11, 12]. The value of DRE is
higher than industrial benchmark and this faci4.3.2. Inspection Faults
indicated high quality of software project. All inspection faults are documented in text
These results indicate that defect removal file. Every inspection file was manually created
yield of ASA isn't significantly different from tha and classified according ODC types. The result of
of inspections. The defect removal yield of this classification is shown in table 7. Note thmat
execution-based testing is two times higher than handle inspection some additional properties are
that of ASA and therefore may be more effective documented: readability of code, maintainability,

at finding the defects. naming convention, coding standards and
Table 5. Defect Removal Yield
Project Phase ASA ASA (%) Inspections (%o) Test (%) DRE (%0)
SP1.0 Not performed Not preformed 42,31 96.73 98.10
SP1.1 Prior to inspections 35.00 20.48 98.18 99.05
SP1.2 During test 37.50 33.21 62.57 99.50

RECENT, VOL. 8, nr. 2 (20), July, 2007 105

Quality Code Analysis in Students’ Projects

Table 7. Inspection faults classification
pect . Heat regardless of whether or not ASA tests are

SP1.1 SP1.2

‘ SP1.0 % %) performed.
Defect Type (%) ’ s
: After Prior to
NoASA | s qn ASA 4.4. Programmer Errors o _
Algorithm 30.40 3812 38 27 The questions discussed in this section are:
Documentation 29.01 35.13 25.12 “What kind of programmer errors is most
Checking 26.62 17.85 17.98 frequently identified by ASA? How often does ASA
Assignment 6.33 5.02 8.26 find these errors?”
Function 1.26 1.74 124 To answer to them we used:
Interface 221 1.02 0 e quantity of ASA faults by defect type
Build/Package/Merge | 4.17 1.12 913 To avoid differences in defect types among

programming style. These comments arddifferent tools, only one ASA is used. We choose
approximately 25% of statements in inspectior FlexeLint, because it identified most defect types
records. They are not included in ODC taxonomiesfrom examined ASA tools. Then we merged the
The results show that inspection identifies same and very similar static analysis fault to
Algorithm, Documentation and Checking faults. performed result aggregation. The result is shown
Approximately 85% of all faults belong to thesein table 8. All data are ranked with most frequgnt|
three categories and the distribution is constar faults at the top of the list. FlexeLint can detect

Table 8. Detailed classification of static analyfsigits ordered by T otal occurred time

Critical | Mlajor | Dlinor | Total

Fault Description (%) (%) (%) (%) 0D classification
Possible uze of HULL pointer 1191 1473 | 1928 | 4592 & asigrment
Fosgsible access Out-of-Bounds 0.4 3.44 h.1% 10.13 Checking
Pointer has not been freed or returned 1.04 6.87 0.20 a.11 & gsigrment
Memory leak 292 3.74 n.79 744 & gzigrument
Variable not initialized before using 0.30 0.59 4.45 5.64 & ssigrment
Inappropriate deallocation n.74 128 n.79 3.4l & gzigrument
Suspicious use of 0.10 0.3% 2.03 2.47 Checking
Data overran 0.05 0.15 1.93 213 Checking
Trwpe mismatch with switch expression 0.10 1.93 0.1 218 Checking
Control flows into caze/default 0.05 0.69 1 62 2.42 Checking
Possible passing a mall pointer to function 0.35 0 1.04 1.38 Checking
Ignore return value of function n.10 0.24 0.40 1.33 & gzigrument
Fagzing HULL pointer to function 1.09 1] 1] 1.09 Checking
Urmisual use of a Boolean 1] 0.54 0.54 1.09 Checking
Fointer member neither freed nor zero’ed by destractor 1] 0.94 1] 0.94 & gzigrument
Loop not entered 1] 0.20 0.9 0.7 Checking
Urweachable code 1] 0.z0 0.49 0.7 Checking
Boolean argument to relational 0 0.30 0.05 0.35 Checking
Unparenthesized parameter 1] 1] 0.35 0.35 Checking
Boolean test of assigrment 0 0.30 0 0.30 Checking
Fosgsibly negative subscription 1] 0.25 0.05 0.30 Checking
Constatt value Boolean 0 0 0.25 0.25 Checking
Boolean within “String’ always evaluates to [Trae/False] 1] 0.10 n.10 0.20 Checking
Referencing data from already freed pointer 0.20 0 0 0.20 & ssigrment
Logic error and Typo 0.05 0.10 1] 015 Checking
Possible division by zero 0 0.1% 0 0.1z Checking
Non-negative quantity is never less than zero 1] 1] n.10 n.10 Checking
NULL pointer dereference 0.0 0.0% 0 0.10 & ssignment
Wariable depends on order of evaluation 1] 1] n.10 n.10 Checking
Dereferencing a constart string to a pointer 0.0 0 0 0.0 & ssignment
Resources not freed 1] 0.05 1] 0.05 & gzigrument
Urwecognized format 1] 1] 0.05 0.05 Checking
Wrong matpuat message 1] 1] 0.05 0.05 Checking
Total 19 57 3281 | 412 100

106 RECENT, \VoI. 8, nr. 2 (20), lulie, 2007

Quality Code Analysis in Students’ Projects

more than 800 bugs, but only 33 were found inASA help us to trap programming errors that have

students’ projects. T he faults were given one ef th potential to cause security vulnerable?

following severity levels, based on potential To answer to it we used the followed metric:

failure: e quantity of ASA faults by defect type.

e Critical —this fault can cause application dump, We used static analysis tools for security
service outage, system reboot; vulnerable checking according [13, 14]. We

® Major — this fault can cause segmentation fault,highlightedthe programmer’s error, found by ASA
memory leaks, resource leaks, data corruption; that can potentially cause vulnerable. The results

e Minor — this fault may result in unexpected are present in table 10. These types of programmer
behavior; errors have been documented by [15] as attacks.

e Coding standard — code that violates coding ASA tools have no context information and may
standard and reduced readability andproduce wrong results sometimes.

maintainability ofthe project. The results indicate that ASA can be used to

The results are consistent with the 80-20 rule/ find security vulnerable errors.

Pareto Principle, i.e. a great majority of the fatsl

identified by few key programmer errors, as 5. Conclusions

shown in table 9. “Possible use of NULL pointer” To examine the quality of automated static
is most frequently error, identified by ASA — analysis tools, we inspect three ASA tools. In this
approximately 47% of all faults. About 92% of research we gather information about ASA tools
faults are focused on 10 fault type$o improve fault detection, manually inspection faults and
the code quality we will used this information in system testing failures in students’ projects. Our
future educationsto point the students what kihd oanalysis provides some results that are shown in
programmer errors are most often happen in theiGection 4. Using the received results we can
projects. conclude:

There are some additional limitations on thise The defect removal yield of ASA isn't
research. First ASA tool outputs are screening. significantly different from that of inspections.
Second, assigning of severity level is a manually The defect removal yield of execution-based
operation and is subjective. testing is two times higher than that of ASA and

therefore may be more effective at finding the

4.5. Identification of Security Vulnerabhilities defects.

The question discussed in this section Gah

Table 9. Pareto Effect in ASA Faults

% all faults

% critical
faults

% major
faults

% minor

faults

Top 1 fault:
Possible use of NULL pointer

46.89

62.15

39.06

43.62

Top 5 faults:
Possible use of NULL pointer
Possible access Out-Of-Bounds
Pointer not freed or returned
Memory leak
Variable not initialized before using

75.13

87.27

57.36

77.14

Top 10 faults:
Possible use of NULL pointer
Possible access Out-Of-Bounds
Pointer not freed or returned
Memory leak
Variable not initialized before using
Inappropriate deallocation
Suspicious use of
Data overrun
Type mismatch with switch expression
Control flows into case/default

90.28

89.93

91.03

RECENT, VOL. 8, nr. 2 (20), July, 2007

107

Quality Code Analysis in Students’ Projects

Table 10. Security vulnerable, detected by ASAgool

Fault Description Explanation

Possible use of NULL pointer Possibly cause the application to crash

Possible access Out-Of-Bounds Perhaps on a buffer overflow attack
Possibly cause denial of services

Suspicious use of Malformed data
Cross site scripting vulnerability

Type mismatch with switch expression Possibly causing the application to crash if a user gives a
float instead of a Boolean

Possibly passing a NULL pointer to function Possibly cause application to crash

Passing NULL pointer to function Possibly cause application to crash

Possibly division by zero Possibly cause the application to crash
Possibly cause denial of services

NULL pointer dereference Possibly cause application to crash

Unrecognized format Format string vulnerable, malformed data

Wrong output message Cross site scripting vulnerability that can print out

information about a system

e The ASA tools are effective for identifying two 6. Osteweilintegrating the Testing, Analysis, and Debugging

ODC types: Assignment and Checking. of ProgramsProc. Symp. Software Validation, 1984
. ; . ie . 7. Rutar, N., Almazan, C.B., Foster, JA.Comparison of Bug
¢ The 'ns,peCtlon 'dent'f'es Algorithm, Finding Tools for JavaProc. [EEE Symp. Software
Documentation and Checking faults. - Reliability Eng. (ISSRE), p. 245256, 2004
® The great majority of the faults identified by few 8. Chillarege, R., Bhandari, I.S. et aOrthogonal Defect
key programmer errors. Classification - A Concept for In-Process Measuretae

* “Possible use of NULL pointer” is most often ~ \EFE Trans. Software Eng., vol. 18, no. 11, p. 988:9
ov.

fault, identified by ASA — approximately 47% 9. * * *. |EEE Standard Classification for Software

of all faults. Anomalies|EEE Standard 1044-1993, 1993

e About 92% of faults are focused on 10 fault 10. Humphrey, W.S.A Disdpline for Software Engineering
types. Addison Wesley, 1995

e The ASA tools can be used to find security 11@5%2?& (\:,gllsggv‘fgz [;fg‘;i?% Ffa\elgr;_()fg;G Efficency

vulnerable errors. 12. Jones, C.Software Assessments, Benchmarks, and Best
In conclusion results indicate that ASA tools Practices Addison-Wesley, May, 2000

are economical complement to other testin: 13 Chgss, B Improving Computer Security psing Extgnded
Static CheckingProc. IEEE Symp. Security and Privacy,

techniques. 0. 160-173, 2002

14. Chess, B., McGraw, GStatic Analysis for SecuritiEEE
6. References Security & Privacy, Vol. 2, no. 6, p. 76-79, 2004
1. http/mww.gimpel.convhtml/products.htm 15. http:/www securityfocus.com
2. http/Awww.reasoning.com 16. Zheng, J., Wiliams, L. et alOn the Value of Static
3. http://klocwork.com Analysis for Fault Detection in SoftwarédEEE Trans.
4. Basili, V.R., Green, S., et &he Empirical Investigation of Software Eng., Vol. 32, no. 4, p. 240-253, AprilpBO

Perspective-Based Readitgmpirical Sotware Engineering,
Vol. 1, No. 2, 1996

5. Young, M., Taylor, R.N:Rethinking the Taxonomy of
Fault Detection TechniqueB.roc. Conf. So ftware Eng., p.
5362, 1989

Received in March 2007, and revised form in Jur®/20

108 RECENT, \VoI. 8, nr. 2 (20), lulie, 2007

