
Quality Code Analysis in Students’ Projects

 RECENT, Vol. 8, nr. 2 (20), July, 2007 101

1. Introduction
One of the possible fault-detection techniques

is static analysis. This analysis concerned
evaluating a system and its components based on a
code, forms, data structures, documentation
without program execution. Inspections are an
example of static analysis that relies on code
rewires. The other possibility is using of automated
tools for that purpose. These tools help us to reduce
code errors such as runtime exception, redundant
code, inappropriate use of variables, division by
zero and potential memory leaks. We defined the
use of automated static analysis (ASA) tools and
Inspections that mean manual code review. ASA
may help software engineers to fix faults in
software test process. In this paper we report the
result of using static analysis procedures as a fault
detection technique in students’ projects.

The study was a research that analyzed 500
students’ projects in Technical University of Sofia,
Computer System Department. Since 1996 we
collect, inspect and analyze by ASA tools over 9
million lines of code (LOC). In our research we
examine software projects written in C/C++ that
underwent various combinations of inspection and
ASA. We used Goal-Question-Metric (GQM) to
motivate and focus our data collection and analysis.

2. Background

In this section we provide an overview of ASA
tools and classes of faults and failures that are most
often detected by ASA and by inspectors.

2.1. Automated Static Analysis Tools

ASA can be used as an added fault-detection
filter in software development process. ASA tools
automate the identification of certain types of
anomalies, as discussed above, by scanning and
parsing source text of a program to look for a fixed

set of patterns in the code. ASA utilizes control
flow and data flow analysis, interface and
information flow analysis of the source code. There
are some errors that are never detected by ASA
tools [5, 6]. Addit ionally every ASA tool generates
different, sometimes no overlapping, errors [7].

The important benefit of ASA is that they do
not require code execution for bug tracking. In this
case ASA is opposite to the language compilers. C
language doesn’t have strong type checking and the
compiler can omit some errors. They can be
trapped by ASA tools.

There are range of ASA tools and services
deployed for C/C++ programs. One of these
products is FlexeLint [1]. It will check C/C++
source code and find bugs, glitches, inconsis-
tencies, non-portable constructs, redundant code,
and much more. It looks across mult iple modules,
and so, enjoys a perspective your compiler does not
have. FlexeLint is a Unix-based tool and there is
also Windows-based version: PC-Lint. The result
of the tool working is demonstrated on figure 1.

The other good ASA tool is Reasoning [2]. Its
services boost the productivity of development
teams by uncovering security vulnerabilit ies and
reliability defects before they become costly
problems. This tool finds defects in C/C++
applications. Reasoning’s Discovery Mapping
Analytics Service (DMA) is an analysis of users’
source code using static analysis techniques and
Reasoning’s expertise in identifying
Implementation Defects. The tool process users’
code through various static analysis engines and
analyze the results to benchmark the quality level
of each component of the application.

The followed metrics are embedded into
Reasoning:
 Metrics for Priorit ization – Using Reasoning’s

Discovery Mapping Analytics service, the

Daniela GOTSEVA, Ognian NAKOV, Luka BEKIAROV
Technical University of Sofia

QUALITY CODE ANALYSIS IN STUDENTS’ PROJECTS

Abstract. In this study we focused on three ASA tools for C/C++ programs. After short ASA tools description, we
examine the faults identified by ASA tools, manual inspections and system failure testing. Additionally we categorize
raw output from ASA tools that help us to make conclusions about the efficiency of static analysis for software fault
detection in students’ projects. We analyze 500 student projects during the last 12 years.

Key words: static analysis, bug reviews, C/C++ and Java programming

Quality Code Analysis in Students’ Projects

 102 RECENT, Vol. 8, nr. 2 (20), Iulie, 2007

engineering managers will have the information
to recognize and priorit ize the most problematic
application modules and direct engineering
resources for improved effectiveness and more
predictable results.

 Metrics for Risk Management – Reasoning’s
Discovery Mapping Analytics service maps
implementation errors that cause system crashes
or security vulnerabilit ies. With this mapping, the
user can significantly enhance risk assessment
and management capability, with improved
priorit ization, calibration and predictability.
Improvements in process for discovering defects
will improve the ability to manage the risk of
killer defects gett ing to customers.

 Metrics for Code Integrity Benchmarking –
Reasoning’s Discovery Mapping Analytics
service is a unique addit ion to your management
dashboard, providing quality benchmarks.
Reasoning’s DMA service provides an unbiased,
third-party assessment of code reliability and
vulnerability. The DMA results show how users’
code characterist ics compare to those of some of
the world’s largest development organizations.
Once measured, the user can compare: results of

a quality init iat ive over the lifecycle steps of an
application, use of different methodologies, team
structures, training protocols, etc.

Reasoning DMA service provides metrics,
giving the dashboard measurements that let manage
quality init iat ives effectively. Some of the possible
error tracking with Reasoning are: NULL pointer
assignment, out of array access bounds, memory
leaks, bad deallocation and uninit ialized variables.

The last tool present in our work is Klocwork
K7 [3]. Its static analysis (see figure 2) is the most
mature, scalable solution on the market, enabling
accurate and efficient defect detection early in user
process. K7 can be deployed both at the developer
desktop and at a full system build t ime, ensuring
full coverage of users code problems and enabling
integration static analysis best practices in a way
that best suits your development processes.

Klocwork K7 has two main functions:

� Operational Defect Detection and Removal
K7 provides user’s development team with a

mult i-dimensional analysis of fundamental defect
categories. It is designed for ease-of-use build-
over-build with features such as a build and report

Figure 1. Simple C++ example and FlexeLint output

Quality Code Analysis in Students’ Projects

 RECENT, Vol. 8, nr. 2 (20), July, 2007 103

management GUI, industry leading message
filtering, flexible configuration, and the powerful
learning and tuning knowledge base. To do this, K7
analyzes C, C++, and Java source code and
provides a summary of code problems, including

defects, security vulnerabilit ies, architectural
foundation issues, and metrics. It highlights the
crit ical problems and separates them from the non-
crit ical problems (see figure 3), allowing the team
to assess the reported issues and decide whether to
fix them or filter them. See table 1 for list of defect
categories.

� Defect Detection and Prevention
The challenge for organizations that build or

maintain large applications is to identify defects as
early as possible in the development cycle (see
figure 4). A defect that is identified and corrected
while the developer is writ ing the code has a cost
that is orders of magnitude lower than correcting
the same defect in any of your existing test phases
or once the product is released.

For years, the benefits of finding software

Figure 2.
Klocwork static

analysis
technology

Figure 3. Integrating K7 into Eclipse IDE

Table 1. Defect Categories List for C/C++ and Java languages

Quality Code Analysis in Students’ Projects

 104 RECENT, Vol. 8, nr. 2 (20), Iulie, 2007

defects before QA have been well documented and
understood. Unfortunately, the only mechanisms
available to do this efficiently have been either
manual code reviews and/or lint-type static code
analyzers. Both these approaches do have their
benefits but suffer from various inefficiencies, least
of which is an ability to establish good coverage of
a large code base.

Now, with the advancement of static code
analysis technology, potentially catastrophic
defects can be found automatically and accurately.
These problems will be identified early in the
development process since static analysis does not
require running code – it can operate even before
user compile and integrate software. The removal
of these problems improves the quality of software,
while enhancing developer productivity.

In this study we used Basil taxonomies as
appropriate for students’ project assessment.

3. Case Study Details

In this section we explain how to collect the
students work and some limitation to our research.

3.1. Data Collection

We collected and analyzed faults into 500
students’ projects during last twelve years. Data
analysis consists of faults for above nine million
LOC written in C/C++, developed by bachelor and
master of computer science students. In our
analysis we discussed three cases: projects with
inspections, projects with ASA tools testing at first
step and inspections at second, and projects with
inspections first and ASA tool testing after that.
For our research purpose we used different ASA
tools, as shown in table 3. In this study the number
of errors found by FlexeLint is two t imes than
errors found by Klocwork K7, and four t imes than
errors found by Reasoning. Therefore we based our

analysis on FlexeLint results.
We denoted students’ projects as SP and

defined three product versions: SP1.0 that have
only handle inspections, SP1.1 and SP1.2 that are
different in ASA tools but have ASA tool testing
and inspections too.

3.2. Limitations

There are some limitations in our research. We
used ODC taxonomies to classify errors. Next
classification is done without information about
severity or impact of potential failure. Addit ionally
our study focused only three ASA tools and isn’t
representative of all ASA tools. Finally, the result
isn’t representative for programmers fault and it
may be different for projects, created in other
languages than C/C++.

4. Results

In this section we provided the achieve results.
We divided them into five categories, given in
sections 4.1 - 4.5. The basic goal is to determine
whether ASA tools can help to students to improve
their programming techniques and to see what kind
of errors are most frequently occurred in students’
projects. Each section started with a base question
and short explanation of a used metrics to answer
to the question in it . Using of GQM in each section
help us to collect and analyze data. All of data
analysis, implication of it are posted and discussed.

4.1. Student’s Project Quality

The question that is important in this section
is: “Will a student’s project be of higher quality if
ASA tool is using in development process?”

To answer to this question we used:
 quantity of defects found by system testing;
 quantity of defects found by our testing.

Divided by churned thousand lines of code
(KLOC). The results were shown in table 4. Project
quality comparison based on a number of total
failures per churned KLOC (KLOCC). In the table
we used SP1.0 as a baseline project for
comparison. We normalized the failures per
KLOCC metrics relatively to the SP1.0 projects.
This gives us relative quality of SP projects.

There is a wide variance in the relative quality

Figure 4. Area of bug tracking

Table 3. Data Analysis

Quality Code Analysis in Students’ Projects

 RECENT, Vol. 8, nr. 2 (20), July, 2007 105

of the projects. As a result, our analysis didn’t
provide conclusive results about whether ASA
tools will help to increase the SP projects quality.

4.2. Fault Detection Yield

The question that we asked in this section is:
“ How effective is ASA at detecting faults compared
with inspections and testing?”

To answer to this question we used:
 quantity of ASA faults;
 quantity of inspection faults;
 quantity of test failures.

Fault detection yield (FDY) refers to the
percentage of defects, present in the code at the
t ime of fault detecting practice [10]. FDY can’t be
precisely computed until the project is used
extensively by the users. This measure decreased as
more bugs are found. Addit ionally we calculated
defect removal efficiency (DRE) [11] as a measure
of how well bugs are removed. Software defect
removal efficiency is percentage of total bugs
eliminated in the code. High level of defect
removal efficiency is corresponding to high level
of user satisfaction.

For SP1.2 ASA performed during test, for
SP1.1 ASA performed prior to inspection. No ASA
test is done for SP1.0. The results are shown in
table 5. For project SP1.2 the faults detections yield
of test is relatively low, because ASA was
performed during test. However DRE for project
SP1.2 is 99.5%, which is approximately the same
as the other projects. Research indicates that the
user can receive high quality project, if the result is
greater than 95% [11, 12]. The value of DRE is
higher than industrial benchmark and this fact
indicated high quality of software project.

These results indicate that defect removal
yield of ASA isn’t significantly different from that
of inspections. The defect removal yield of
execution-based testing is two times higher than
that of ASA and therefore may be more effective
at finding the defects.

4.3. Classes of Faults and Failures
The main questions discussed in this section

are: “What classes of faults and failures are most
often detected by ASA, by inspection and by system
testing? What classes of defects are escaped to the
customers?”

To answer to them we used:
 quantity of ASA faults by ODC type;
 quantity of inspection faults by ODC type.

We counted faults according to ODC type
classification. Here we will present the results from
each metrics.

4.3.1. ASA Faults
Each fault was documented with a problem

explanation and detailed information such as:
description, location, precondit ion, impact, severity,
suggestion and code fragment. Then every fault
was manually classified according to ODC types.
Finally faults were counted and percentages are
calculated. A summary of the results are shown in
table 6. Only FlexeLint is included in comparison.

The result shown in table 6 indicated that
ASA tools are effective for identifying two ODC
types: Assignment and Checking. Checking
defects are happen in low level design or coding
phases and Assignments were occurred only in
coding phase. These problems are due to logical
than static analysis.

4.3.2. Inspection Faults

All inspection faults are documented in text
file. Every inspection file was manually created
and classified according ODC types. The result of
this classification is shown in table 7. Note that in
handle inspection some addit ional properties are
documented: readability of code, maintainability,
naming convention, coding standards and

Table 4. Relative SP Projects Quality

Table 5. Defect Removal Yield

Table 6. ASA faults classification according to ODC
taxonomies

Quality Code Analysis in Students’ Projects

 106 RECENT, Vol. 8, nr. 2 (20), Iulie, 2007

programming style. These comments are
approximately 25% of statements in inspection
records. They are not included in ODC taxonomies.

The results show that inspection identifies
Algorithm, Documentation and Checking faults.
Approximately 85% of all faults belong to these
three categories and the distribution is constant

regardless of whether or not ASA tests are
performed.

4.4. Programmer Errors

The questions discussed in this section are:
“ What kind of programmer errors is most
frequently identified by ASA? How often does ASA
find these errors?”

To answer to them we used:
 quantity of ASA faults by defect type

To avoid differences in defect types among
different tools, only one ASA is used. We choose
FlexeLint, because it identified most defect types
from examined ASA tools. Then we merged the
same and very similar static analysis fault to
performed result aggregation. The result is shown
in table 8. All data are ranked with most frequently
faults at the top of the list. FlexeLint can detect

Table 7. Inspection faults classi fication

Table 8. Detailed classification of static analysis faults ordered by Total occurred time

Quality Code Analysis in Students’ Projects

 RECENT, Vol. 8, nr. 2 (20), July, 2007 107

ASA help us to trap programming errors that have
potential to cause security vulnerable?”

To answer to it we used the followed metric:
 quantity of ASA faults by defect type.

We used static analysis tools for security
vulnerable checking according [13, 14]. We
highlighted the programmer’s error, found by ASA
that can potentially cause vulnerable. The results
are present in table 10. These types of programmer
errors have been documented by [15] as attacks.
ASA tools have no context information and may
produce wrong results sometimes.

The results indicate that ASA can be used to
find security vulnerable errors.

5. Conclusions

To examine the quality of automated static
analysis tools, we inspect three ASA tools. In this
research we gather information about ASA tools
fault detection, manually inspection faults and
system testing failures in students’ projects. Our
analysis provides some results that are shown in
Section 4. Using the received results we can
conclude:
 The defect removal yield of ASA isn’t

significantly different from that of inspections.
The defect removal yield of execution-based
testing is two t imes higher than that of ASA and
therefore may be more effective at finding the
defects.

more than 800 bugs, but only 33 were found in
students’ projects. The faults were given one of the
following severity levels, based on potential
failure:
 Critical – this fault can cause application dump,

service outage, system reboot;
 Major – this fault can cause segmentation fault,

memory leaks, resource leaks, data corruption;
 Minor – this fault may result in unexpected

behavior;
 Coding standard – code that violates coding

standard and reduced readability and
maintainability of the project.
The results are consistent with the 80-20 rule/

Pareto Principle, i.e. a great majority of the faults
identified by few key programmer errors, as
shown in table 9. “Possible use of NULL pointer”
is most frequently error, identified by ASA –
approximately 47% of all faults. About 92% of
faults are focused on 10 fault types. To improve
the code quality we will used this information in
future educations to point the students what kind of
programmer errors are most often happen in their
projects.

There are some addit ional limitations on this
research. First ASA tool outputs are screening.
Second, assigning of severity level is a manually
operation and is subjective.

4.5. Identification of Security Vulnerabili ties

The question discussed in this section is: “Can

Table 9. Pareto Effect in ASA Faults

Quality Code Analysis in Students’ Projects

 108 RECENT, Vol. 8, nr. 2 (20), Iulie, 2007

 The ASA tools are effective for identifying two
ODC types: Assignment and Checking.

 The inspection identifies Algorithm,
Documentation and Checking faults.

 The great majority of the faults identified by few
key programmer errors.

 “Possible use of NULL pointer” is most often
fault, identified by ASA – approximately 47%
of all faults.

 About 92% of faults are focused on 10 fault
types.

 The ASA tools can be used to find security
vulnerable errors.
In conclusion results indicate that ASA tools

are economical complement to other testing
techniques.

6. References
1. http://www.gimpel.com/html/products.htm
2. http://www.reasoning.com
3. http://klocwork.com
4. Basili, V.R., Green, S., et al.:The Empirical Investigation of

Perspective-Based Reading. Empirical Software Engineering,
Vol. 1, No. 2, 1996

5. Young, M., Taylor, R.N.: Rethinking the Taxonomy of
Fault Detection Techniques. Proc. Conf. So ftware Eng., p.
53-62, 1989

6. Osterweil: Integrating the Testing, Analysis, and Debugging
of Programs. Proc. Symp. Software Validation, 1984

7. Rutar, N., Almazan, C.B., Foster, J.S.: A Comparison of Bug
Finding Tools for Java. Proc. IEEE Symp. Software
Reliability Eng. (ISSRE), p. 245-256, 2004

8. Chillarege, R., Bhandari, I.S. et al.: Orthogonal Defect
Classification - A Concept for In-Process Measurements.
IEEE Trans. Software Eng., vol. 18, no. 11, p. 943-956,
Nov. 1992

9. * * *: IEEE Standard Classification for Software
Anomalies. IEEE Standard 1044-1993, 1993

10. Humphrey, W.S.: A Discipline for Software Engineering.
Addison Wesley, 1995

11. Jones, C.: Software Defect Removal Efficiency”.
Computer, Vol. 29, no. 4, p. 94-95, Apr. 1996

12. Jones, C.: Software Assessments, Benchmarks, and Best
Practices. Addison-Wesley, May, 2000

13. Chess, B.: Improving Computer Security Using Extended
Static Checking. Proc. IEEE Symp. Security and Privacy,
p. 160-173, 2002

14. Chess, B., McGraw, G.: Static Analysis for Security. IEEE
Security & Privacy, Vol. 2, no. 6, p. 76-79, 2004

15. http://www.securityfocus.com
16. Zheng, J., Williams, L. et al.: On the Value of Static

Analysis for Fault Detection in Software. IEEE Trans.
Software Eng., Vol. 32, no. 4, p. 240-253, April, 2006

Received in March 2007, and revised form in June 2007

Table 10. Security vulnerable, detected by ASA tools

