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Abstract. A Pneumatic artificial muscle (PAM) is a pneumatic device developed in the 1950’s as an orthotic appliance 
for polio patients by J.L. McKibben. It consists of a rubber bladder encompassed by a tubular braided mesh. When the 
bladder is inflated, the actuator expands radial and undergoes a lengthwise contraction. 

Present paper starts the research regarding PAM (pneumatic artificial muscle) by determining the static model of 
a PAM and testing this model by some simulations. The parameters resulted from the static model will be the input data 
for the dynamic model and, for the theoretical simulations, respectively. 
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1. Introduction  

In recent years, robotics engineers have 
begun to rediscover these fascinating devices, and 
use them as actuators for their robots. These 
actuators exhibit non-linear force-length properties 
similar to skeletal muscle, and have a very high 
strength-to weight ratio. 

The static model of a PAM can be done 
based, as many researchers done it before [1], 
based on the virtual mechanic work. This will 
provide a relationship between actuator force, 
pressure, and length. After that, the obtained 
equations will be used to derive further 
relationships between force, pressure, length, and 
stiffness.  

 
2. Simplified static model 

The PAM can be modelled as a cylinder. 
The non-cylindrical end effects are ignored, and 
the wall thickness is assumed to be zero. The 
dimensions of this cylinder are the length, L, and 
diameter, D. Neither of these dimensions remains 
constant. Assuming inextensibility of the mesh 
material, the geometric constants of the system are 
the thread length, b, and n, the number of turns for 
a single thread. The final dimension used for this 
formulation is the interweave angle, θ. Theta is the 
angle between the thread and the long axis of the 
cylinder. The interweave angle changes as the 
length of the actuator changes. 

The relationship between these parameters is 
presented in figure 1. 

 

 
Figure 1. Constructive design of a BPA [1] 

 
During operation L, D and θ are variable (θ 

changes as length L changes), while, based on the 
above hypotheses, the b and n parameters are 
constant. 

As it is shown in figure 1, the relationships 
between these parameters are: 

θ= cosbL ; (1) 

π
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n

b
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The volume of any cylinder is equal to its 
length times the cross sectional area. 
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Substituting equations (1), (2) into (3) results: 
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The maximum contracted length (minimum 
length) occurs when the actuator volume is at its 
greatest. This results in equilibrium of the system. 
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To be able to simulate the static model it is 
chosen a PAM that has the maximum interweave 
angle °=θ 7.54  and the corresponding length and 
diameter L = 40 mm, D = 10.865 mm. 

These value together the hypothesis that b 
and n parameters are constant during operation, are 
used to determine this functional parameters. Thus, 
from equation (1) results: 

( ) mm221.69
7.54cos

40

cos
=

°
=

θ
= L

b . (5) 

Using equations (2), (5) it will be determi-
ned the number of turns for a single threat. Thus: 

( )
248.2
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7.54sin221.69sin =
π⋅

°⋅=
π

θ=
D

b
n . (6) 

Thus it is obtained that a single threat has 2 
complete turns and 25% from the third. 

After the geometry is determined it can be 
developed a relationship between the force as 
function of pressure, and the length of PAM. To 
obtain this relationship it will be done a simple 
energy analysis. The assumption is conservation of 
mechanical work, Wi = We. The losses will be 
neglected in this step. Work is input to the actuator 
when the air pressure moves the inner bladder 
surface. Thus, the pressure variations determine a 
variation of input mechanical work: 

( )
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dsdlPPdW
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where: Pabs is absolute internal gas pressure;  
Patm – atmospheric pressure; Pg – gage pressure;  
Si – total inner surface; dsi – area vector; dli – inner 
surface displacement; dV – volume change. 

The output work occurs when the actuator 
shortens due to the change in volume. 

dLFdWe ⋅−= . (8) 
Considering the ideal system can be applied 

the mechanical work conservation law: 

ei dWdW =  (9) 
Substituting equations (7) and (8) into (9) results: 

FdLdVPm −= ; (10) 

dL

dV
PF g−= . (11) 

Using the geometry that was established 
above (equations (1) ÷ (3)), can be developed an 
equation for force as a function of pressure and 
interweave angle. 
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Thus, results an equation of force as 
function of Pg and θ. 
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Note that at the maximum interweave angle, 
54.7°, the force output of the actuator is zero. The 
geometric variables used above provide a 
straightforward formulation, but to use the 
resulting equations in practice, they first need to be 
modified. The first step is to develop a method to 
accurately measure the braid length, b, and count 
the non-integer number of thread wraps [1]. If the 
cylindrical mesh is opened and laid flat, the 
trapezoidal geometry is easily observed. The shape 
of the trapezoid is governed by the interweave 
angle, θ, and the length of the trapezoid side, ℓ. 

θ= cos2 lAL  (14) 
θ= sin2 lBC  (15) 

where A is the number of lengthwise trapezoids 
and B - number of circumferential trapezoids 
(around actuator) 

The diameter is proportional to the 
circumference and so: 

π
θ=

π
=

n

BC
D

sin2 l
. (16) 

Setting the length (equations (1) and (14)) 
and diameter (equations (2) and (16)) equations 
equal results: 

lAb 2=  
B

A
n =  (17) 

Thus, to characterize such and actuator it is 
enough to know the trapezoid size and number of 
circumferential trapezoids in both directions. 

The results obtained above used the 
maximum value of the interweave angle. To be 
able to apply a control to this system it is necessary 
to eliminate this angle. This is justified by the fact 
that it is difficult to sense the interweave angle 
during operation of the actuator. It is much easier 
to measure the length. Thus, in the following these 
equations will be rewritten in terms of force, 
pressure, and length, because these variables can 
be measured most easily. 

Considering the triangle from figure 1 there 
can be determined the sin and cos function of θ 
interweave angle. Thus, 
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b

L=θcos ; 
b

Lb 22
sin

−=θ . (18) 

Substituting these equations into (4) and 
(13) equations will result the expression of the 
volume and force as function of geometric 
parameters. 
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Relation (20) sustains the affirmation that 
the PAM exhibit properties of a variable stiffness 
spring. This approximation is an advantage relative 
to control but the biggest disadvantage is the 
stiffness that is not easy to be measured. Therefore 
this parameter should be mathematically 
determined by the force derivate with respect to 
length: 

dL

dF
k =  (21) 

The derivate was done by neglecting the 
pressure Pg change relative to L, thus 0/ ≈dLdPg . 

Thus, after derivation, the stiffness is  
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Extracting Pg from equation (19) and 
substituting into (22) results, 
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Substituting equation (23) into (22) results 
the expression of stiffness 
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Based on equations (20) and (22) there were 
drawn the change of stiffness k (figure 2) and 
actuator force F (figure 3) as functions of PAM’s 
length. It was considered that the length L is 
between 40 and 50 mm, the actuator diameter start 
at 10mm and the feed pressure is between 3 and 6 
atm. 

Figures 2 and 3 shows that force is a 
nonlinear function of length, tending to zero at 
maximum contraction, and stiffness is a linearly 
increasing function of length and pressure. In 
figure 4 this nonlinearity is hard to be seen because 
the input interval is a small one. Thus, if the 
muscle contracts between 50 and 10 mm, the force, 
F, variations relative to length L, will be that 

shown in figure 4, the nonlinearity dependence and 
tendency to zero being observable.  

 

 
Figure 2. Stiffness k changes as function of length L, for 

a given pressure variation 

 
Figure 3. Force F changes as function of length L, for a 

given pressure variation 
 

 
Figure 4. Force F changes as function of length L, for a 

given pressure variation 
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The simulations were done considering 
neglected the effectiveness of the system and the 
effects of open ends of the PAM. The researchers 
[1, 2] establish that in theoretical case the output 
force is higher that the measured one. 

This difference forces the introduction of 
effectiveness, which represents the percentage ratio 
between the measured force and the theoretical 
determined force. Considering the experiments 
done until now it can be considered that the 
effectiveness is a function of gage pressure. 
Experiments done by Colbrunn [1] show the 
dependence between effectiveness and nominal 
pressure is not a linear one (for a pressure of 60 psi 
the effectiveness is around 92%). 

 
3. Open ends effects 

To obtain a correct static model must be 
considered the open ends effects. The ends of the 
PAM are non-cylindrical. The end effects 
determine changes of output force at the length 
limits of the actuator. The long end effect occurs 
when the actuator is at its maximum length. At this 
point, any increase in length would cause the 
braids to stretch. Since the stiffness of the braiding 
material is very high compared to the stiffness of 
the actuator, the long end effect can be modeled as 
a spring of very high stiffness when the actuator 
reaches a maximum length. In [1] Colbrunn shows 
that an increase of the pressure determines a high 
increase of gradient of the force-length diagram, 
showing the effects of the open ends of PAM. 

The actuator, like a muscle, can only pull. 
The model (20) predicts that if the length is less 
than the maximum contracted length, then the 
force output will be negative (pushing). Thus, a 
short end effect is added to the model. It simply 
states that if the length is less that the minimum 
length, the force output becomes zero. 

Incorporating the effectiveness and the end 
effects into (20) results (for minLL > & minLL < ): 
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where ( maxmax & LLLL <> ) 

( )


 −

=
0

max
max

LLK
F braid  (26) 

where Kbraid – braid material stiffness. 
Equation (26) is the static model for a PAM. 

This model ignores bladder thickness, bladder 

thickness variation, friction-induced hysteresis, and 
non-linear elastic energy storage of the bladder.  

Klute and Hannaford [1] have developed a 
more accurate model using these factors, but the 
cost of the more accurate model is much longer 
equations and therefore more computational time. 
This model is adequate and yet simple enough that 
it is suitable for dynamic simulations and control. 
 
4. Conclusions 

The first step of PAM research is to 
mathematical model it both from static and 
dynamic point of view. The static analysis, done in 
this paper, shows that this PAM can be 
approximated with a high stiffness spring. All the 
results obtained will be used in the dynamic model 
and in control. Also, the theoretical results will be 
compared with the measured one. 
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