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Abstract. This paper presents an analytical solution and a computer code for solving the problem of how to match a 
load impedance to the impedance of a transmission line using three short stubs. 

Matching the impedance of a network to the impedance of a transmission line is necessary first, because it makes 
all the incident power to be delivered to the network, and second, it is necessary for a better behave of the generator, 
because, usually the generator is designed to work into an impedance close to common transmission line. In this case 
the load impedance has no reactive part which can pull the generator frequency, and the SWR on the line is close to the 
unity, so the line connecting the generator to the load is non resonant. Stubs are used for producing a pure reactance at 
the attachment point, reactance that varies with their length. For matching any impedance load to the impedance of the 
transmission line 3 stubs, that have fixed positions on the transmission line, can be used. This paper is focused on how 
to determine their lengths for solving the problem of matching the impedances. 

An analytical solution of this problem is given and, based on it, a computer code in MATHCAD is developed 
too. The computer code offers the lengths these stubs must be regulated to, when the load impedance and the impedance 
of the transmission line are known. There exist four such solutions, so four combinations of lengths, and the computer 
code gives all these solutions.  
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1. Introduction 

In the field of microwaves (see[1, 2]) there 
are used high frequencies and so little wavelengths 
λ (λ = c/f, where c is the wave propagation velocity 
and f the frequency). The wavelength of a wave is 
the distance we have to move along the 
transmission line for the sinusoidal voltage to 
repeat its pattern, the spatial period of the wave. 
Because the circuits are often bigger than the 
wavelength there can’t be neglected the 
propagation of the signals along them. That’s why 
in microwaves even the simplest circuits must be 
considered as transmission lines, in which the 
propagation phenomena are not momentary but 
they are produced with a finite velocity, and so 
along them there do appear the dephasation.  

In any transmission system, a source sends 
energy to a load (the forward wave). The power 
has to go somewhere. If it isn’t absorbed it must be 
reflected. The difference between forward and 
reflected power flow is the power delivered to the 
load. 

The transmission network is designed in the 
ideal case such that the characteristic impedances 

of the source, the transmission line and the load are 
all identical. When the transmission line 
impedance does not match that of the load, part of 
the transmitted waveform is reflected to the source 
(the backward wave). This reflected wave adds to 
the transmitted one and we get the Standing Wave. 
So because the amplitude vary as a function of 
position along the transmission line the Standing 
Wave Ratio (SWR) (the ratio between the 
maximum and minimum amplitudes of the total 
waveform-which occurs at 1/4 wave length away 
from the maximum), will in this case be greater 
than one.  

The SWR is a sensitive indicator of 
mismatch on a line. If the impedance match is 
perfect there is no reflected wave, so the amplitude 
of the total waveform is constant along the 
transmission line. In this case SWR = 1 and this 
situation tells us that maximum power is 
transferred to the load.  

The impedance we measure also varies 
along the transmission line because it is the total 
voltage on the line divided by the total current on 
the line. We have the following total line voltage: 



Using Short Stubs for Matching the Impedance of a Load to the Impedance of a Transmission Line-Analytical … 

 RECENT, Vol. 8, nr. 3a(21a), November, 2007 493 

−+ += VVV  and similarly: −+ += III . On a 
lossless line the current in the forward wave is in 
phase with the voltage but the current in the 
backward wave is oppositely. So even if the 
forward wave voltage and forward wave current 
are fixed (their ratio is the characteristic impedance 
of the line), because of the fact that the backward 
wave phaser swing around, the impedance varies 
along the line (see [2, 3, 4]). 

So the impedance measured at a point along 
a transmission line depends not only on what is 
connected to the line, but also on the properties of 
the line, and where the measurement is made 
physically along the line, with respect to the load. 
The total backward wave amplitude divided to the 
total forward wave amplitude gives a complex 
dimensionless number, named gamma, (the 
complex reflection coefficient) which is related to 
how much is reflected at the end of the line and 
how far the reflecting point is. 

There exists a relation between the complex 
dimensionless number gamma at any point along 
the line to the normalized load impedance zl = Zl/Z0 
(a complex dimensionless quantity too): 

Γ−
Γ+=

1

1
lz ,     or    

1
1

+
−=Γ

l

l

z

z
. 

The normalized impedance at the point P is what a 
generator would see if we cut the line at this point 
P and connect the remaining transmission line and 
its load to the generator terminals.  

Gamma is related to the SWR by the 
relation: 

Γ−
Γ+

=
1

1
SWR  

It is well known that the complex amplitude 
of a wave may be defined in three ways: voltage 
amplitude, current amplitude, or normalized 
amplitude. It is represented, in each situation, by a 
complex phaser whose length is proportional to the 
size of the wave and whose phase angle tells us the 
relative phase with respect to the origin or zero of 
the time variable. That’s why we use complex 
arithmetic and algebra: to express both amplitude 
and phase angel information with a single symbol. 

On a lossless transmission line the waves 
propagate along the line without change of 
amplitude and that’s why Γ  doesn’t depend on 

the position along the line. The phase angle of the 
wave complex amplitude varies as we move along 
the transmission line (for the positive traveling 
waves the phase decreases with increasing distance 

from the generator, whereas for the negative 
traveling waves the phase advances with increasing 
distance from the generator) (see[5]). 

We can use Smith charts to determine input 
impedances and how values of complex impedance 
affect the complex reflection coefficient, for 
example what complex reflection coefficient 
would result from connecting a particular load 
impedance to a system having a given 
characteristic. The Smith chart is more than a chart 
it is a graph method needed to describe the 
characteristics of microwave and it represents a 
special bidimensional graph for the coexistence of 
complex impedance and complex reflection 
coefficient information. It is an invaluable aid for 
the design of impedance-matching networks.  

We can also treat the problems of 
impedance-matching networks finding analytical 
solutions as we proceed in this paper.  

 
2. Using stubs for impedance-matching 

transmission lines 
Matching the impedance of a network to the 

impedance of a transmission line has two principal 
advantages. First all the incident power is delivered 
to the network. Second the generator which is 
usually designed to work into an impedance close 
to common transmission line impedances would 
pull the generator frequency, and also the line that 
connects the generator to the load would not be 
resonant. 

One can match the impedance of a load to 
the impedance of a transmission line using for 
example stubs (see [2, 5]). These are shorted or 
open circuit lengths of transmission line intended 
to produce a pure reactance at the attachment 
point, for the line frequency of interest. Any value 
of reactance can be made, as the stub length is 
varied from zero to half a wavelength. It is 
important to notice that if we add a half 
wavelength to the stub length the reactance of the 
stub comes back to the same value, so that’s why 
in practice the stubs are made in the range 0 to 0.5 
wavelengths long.  

Because it is difficult to make a perfect 
nonradiating open circuit s there are always some 
effects on the line, there are more often used the 
short circuit stubs as they have less radiation from 
the ends. 

A stub may be placed in series with one of 
the transmission line conductors but when it is 
difficult to do this the stub and the transmission 
line are connected in parallel. There are not big 
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differences between the two cases, but we consider 
in this paper the case of short stubs connected in 
parallel with the transmission line and we follow 
the ideas given in [6]. 

There can be used one, two, three or more 
such stubs.  

The single stub tuner is perhaps the most 
widely used matching circuit. It can match any 
load, but if the load impedance changes, to adjust a 
single stub tuner is very difficult, because the stub 
must be removed, the line must be fixed at the 
break and a new position and a new length have to 
be determined. 

Two stubs attached to the line at fixed points 
of attachment may be tuned by altering their 
lengths but, as we would see from the following 
paragraphs, solution does not exist for all situations 
(load impedances). That’s why usually there are 
used three stubs which are generally spaced to 
unequal intervals. Triple stubs can match any load. 

 
2.1. The case of a single stub 

 
For this case the Smith chart can be used for 

example to find the stub length, but also an 
analytical solution may be found. 

We have the relation: 

stlA YYY += , (1) 
where YA = 1/ZA is the admittance at the stub 
location A, Yl the wave admittance at distance l 
from the load and Yst the admittance of the stub  
(a short-circuited stub). 

We have the following expressions: 
dctgiYYst β−= 0 , (2) 

l

l
l YY

Γ+
Γ−=

1
1

0 ,   li
ll e β−Γ=Γ 2 , (3) 

where β represents the wave number. 
The matching condition is that YA =Y0, and 

after some calculus (equating real and imaginary 
parts of the resulting equation) the solution is 
obtained. It consists of two values: the values for  
d – the stub length- and l – the distance from the 
load for the stub position. 

As we see from the above paragraph each 
load to be matched asks for its proper value for l 
and so arises the biggest inconvenient of this 
matching circuit if different load impedances have 
to be matched. 

An alternative method uses two stubs but it 
has the inconvenient that it doesn’t mach any load, 
as we would see.  

 
2.2. The case of two stubs 

 
We consider that the two short stubs are 

connected in parallel at points A and B, A situated 
at distance l1 from B, and B at distance l2 from the 
load we have, A and B having fix positions, as in 
the above figure. 

We have: 

11 stlA yyy += , (4) 
and similarly 

22 stlB yyy += , (5) 
where yA = YA/Y0 and yB = YB/Y0 are the normalized 
admittances at the connection points, 

iist dictgy β−= , i = 1, 2, the normalized stubs 

admittances, di being the corresponding stub 
length, 

1

1
1 1 ltgiy

litgy
y

B

B
l β+

β+= ,   
2

2
2 1 ltgiy

litgy
y

l

l
l β+

β+=  (6) 

yl = gl + ibl, gl the normalized conductance of the 
load and bl the normalized susceptance of the load. 

The matching condition is 
1=Ay . (7) 

As we can see if the normalized admittance 
of the load is known we can evaluate yl2.  

Denoting by  
( )

2
Re lB yg =  and by ( )

2
Im lB yb =   

we can write that 2dictgibgy BBB β−+= , and 
further  

)( 2dctgbigy BBB β−+= . (8) 
From the matching condition we deduce two 

equations for real numbers and after solving them 
we obtain the distances d1 and d2. These equations 
are: 



Using Short Stubs for Matching the Impedance of a Load to the Impedance of a Transmission Line-Analytical … 

 RECENT, Vol. 8, nr. 3a(21a), November, 2007 495 

bbdctg B −=β 2 , (9) 

1

1
1

1
ltgg

glbtg
dctg

B

B

β
−β−=β , (10) 

where ( )BB ggglctgb −±= 11β , and 

1
21

2
1

sin

1
1

l
lctgg

β
=β+= . (11) 

There are obtained solutions only when the 
existence condition is satisfied, in fact when  

Bgg ≥1 , (12) 
and there are more than one solution for these 
situations. 
 
2.3. The case of three stubs 

 
For the case of three short stubs situated at 

distances l1, l2, l3 as in figure bellow, the third stub 
is used for ensure the condition:  

Bgg ≥1 ,  
where gB represents the conductance in point B. 

In this case the total admittance in B consists 
of: the total admittance in C, that one that 
corresponds to line of length l2, and of course that 
from the second stub: 

( )
( ) 2

2

2

1
dictg

ltgiy

litgy
y

C

C
B β−

β+
β+= . (13) 

For the point C we have: 
( )
( ) bigdictg

ltgiy

litgy
y C

l

l
C ′+=β−

β+
β+= 3

3

3

1
, (14) 

where, 

3dctgbb C β−=′ , 

( )
( )






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( )
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





β+
β+=

3

3

1
Im

ltgiy

litgy
b

l

l
C . 

(15) 

Because the normalized admittance of the 
load is known, and also the parameters β and l3, we 
can use a computer to evaluate gC and bC. 

The corresponding conductance to use in 
formula (12) is (the first two stubs see the load of 
conductance): 

( )( )
( )( ) ( )2

222
2

2
2

1

1

ltggltgb

ltgg
g

C

C
B

β+−β′
β+= . (16) 

This is used to find 3d . 
So d3 is adjusted to ensure the condition: 

1ggB ≤ . 
In order to manipulate this condition more 

easily we introduce a new parameter, noted f, 
which satisfies the condition 1≤f , such as: 

1fggB =  
Replacing this expression in (16) we obtain: 

( )( )
( )( ) ( )2

222
2

2
2

1
1

1

ltggltgb

ltgg
fg

C

C

ββ
β
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= , (17) 

and denoting by 
( )2

22
sin

1

l
g

β
=  further we get the 

equation: 

( )( ) 2

1

22
2 C

C g
fg

gg
lctgb −=−′ β . (18) 

We deduce from the above equation the two 
solutions for b’: 

( ) 






 −±=′
F

f

fg

gg
lctgb C 1

1

2
2β , (19) 

where  

Cgg

g
F

1

2= . (20) 

Because sometimes one can choose a 
smallness value for f such as f > F we shall consider 
in relation (19) instead of f another parameter, noted 
r, given by the following condition: 



 ≤

=
otherwiseF

Ffiff
r . (21) 

We get: 

( ) 






 −±β=′
F

r

rg

gg
lctgb C 1

1

2
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the two solutions for b’ ( 21, bb ′′ ), and further the 
two solutions for d3, given by the equation: 

bbdctg C ′−=β 3  (23) 


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and 
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
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2
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1
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arctgd

C
 (24) 
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In order to bring these solutions within the 
minimum interval [0, λ/2] we reduce them modulo 
λ/2. 

These two solutions replaced in relation (14) 
allow us to know two complex values for the 
admittances in point C: yC1, yC2. 

For the first value we obtain: 

1131111 bigdictgibgy CCCC ′+=β−+= , (25) 

( )
( ) 2

21

21
1 1
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ltgiy
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C

C
B β−
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2111 dictgibgy BBB β−+= , (27) 
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The lengths of the first and the second stub 
can be obtained from the equations: 

1121 bbdctg B −=β , (29) 

11

111
11

1

ltgg

gltgb
dctg

B

B

β
−β−=β , (30) 

where 

( )11111 BB ggglctgb −±β= . (31) 

As we can see b1 has in this case two values, 
1
1b  and 2

1b so we deduce two values for the length 
of stub number two and two values for the length 
of the first stub. 

We get: 

β
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for the length of the second stub and  
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(33) 

for the first stub. 
After their evaluation we reduce them 

modulo λ/2, from the same reasons as in case of d3. 
For the second value of d3, d32, doing as 

before, we deduce two new values for the length of 
stub number two and two values for the length of 
the first stub. 

So the problem has for solutions. 
 
3. Computer code and numerical results 

The analytical solution from the above 
paragraph, for the case of three short stubs, can be 
the source for a computer code as the expressions 
found for the stubs lengths can be fast and easily 
evaluated using a computer. We use MATHCAD 
to make such a computer code and with it we have 
obtained some numerical results. The computer 
code needs as input dates:  
� the impedance of the transmission line: Z0; 
� the load impedance Zl; 
� the distances l1, l2, l3 between the stubs, and 

between the last stub and the load; 
� the smallness parameter f < 1; 
� the wave length λ to deduce the wave number 

(or directly the wave number) β (β = 2π/λ).  
The main steps of the computer code are: 

1. The evaluation of the normalized admittance 
and of the real numbers given by relation (15); 

2. The evaluation of g1, g2, F, r; 
3. Getting the two solutions for b’, with (22); 
4. For each of the solutions obtain at the step 

before we get a length for stub three; 
5. Reducing these lengths modulo λ/2; 
6. The evaluation of 1Cy , 2Cy , 

1Bg , 
2Bg , 

1Bb , 

2Bb ; 

7. Getting the solutions for b1, first two solutions 
for the case of 

1Bg , and then other two for 

2Bg , using (31); 

8. The evaluation of the lengths for the second 
and the first stub, using (32), and (33). 

As outputs we get the stubs lengths (all the 
forth solutions): two values for the lengths of the 
third stub, and for each of them two solutions for 
the other lengths. 

We run this computer code for different 
input dates and we present in the following 
paragraph the following results obtained. 

For the first example we consider that the 
input dates are: 

Z0 = 2 + 4i 
Zl = 3 + 2i 
l1 = 0.583 
l2 = 0.583 
l3 = 3.5 
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f = 0.9 
λ = 0.35 

We get the following solutions for the stubs 
lengths: 

d31 = 0.1424 
d32 = 0.1106 
d111 = 0.1288 
d211 = 0.1536 
d221 = 0.1449 
d121 = 0.1008 
d212 = 0.119 
d112 = 0.1288 
d222 = 0.0784 
d122 = 0.1008 

For the second example the input dates are: 
Z0 = 5 + 3i 
Zl = 7 + 2i 
l1 = 0.075 
l2 = 0.1 
l3 = 0.2 
f = 0.9 
λ = 0.6 

For this case the solutions are: 
d31 = 0.2058 
d32 = 0.1842 
d111 = 0.2388 
d211 = 0.264 
d221 = 0.2388 
d121 = 0.2064 
d212 = 0.252 

d112 = 0.2388 
d222 = 0.2022 
d122 = 0.2004 

Observation: The distances l1, l2, l3 can be given in 
terms of number of wavelength, so they may be 
represented by dimensionless numbers (we can 
give instead of l1, l2, l3, the numbers n1, n2, n3), 
using the relations: l i = niλ, i = 1, 2, 3. In this case 
the stubs lengths are also dimensionless numbers, 
given in terms of wavelength numbers too. For this 
case the reduction must be made by modulo 0.5, 
and we can run the program without respect to λ, 
for all cases.  
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