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TO THE IMPEDANCE OF A TRANSMISSION LINE-ANALYTICAL
SOLUTION AND COMPUTER CODE
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Abstract. This paper presents an analytical solution andrapeder code for solving the problem of how to mach
load impedance to the impedance of a transmisBieruking three short stubs.

Matching the impedance of a network to the impedarfa transmission line is necessary first, bez@unakes
all the incident power to be delivered to the neky@and second, it is necessary for a better bebétiee generator,
because, usually the generator is designed to imtokan impedance close to common transmission liméhis case
the load impedance has no reactive part which céirite generator frequency, and the SWR on theirclose to the
unity, so the line connecting the generator toltiael is non resonant. Stubs are used for produxipgre reactance at
the attachment point, reactance that varies wiir fength. For matching any impedance load toitiigedance of the
transmission line 3 stubs, that have fixed pos#ion the transmission line, can be used. This padecused on how
to determine their lengths for solving the probleihmatching the impedances.

An analytical solution of this problem is given athsed on it, a computer code in MATHCAD is depelb
too. The computer code offers the lengths thedessnust be regulated to, when the load impedant¢h@nimpedance
of the transmission line are known. There exist fuch solutions, so four combinations of lengtrg] the computer
code gives all these solutions.

Keywords: short stubs, transmission line, impedance, madcinipedance

1. Introduction of the source, the transmission line and the load a
In the field of microwaves (see[1, 2]) there all identical. When the transmission line
are used high frequencies and so little wavelengths impedance does not match that of the load, part of
A (A = c/f, wherec is the wave propagation velocity the transmitted waveform is reflected to the source
andf the frequency). The wavelength of a wave is (the backward wave). This reflected wave adds to
the distance we have to move along the the transmitted one and we get the Standing Wave.
transmission line for the sinusoidal voltage to So because the amplitude vary as a function of
repeat its pattern, the spatial period of the wave. position along the transmission line the Standing
Because the circuits are often bigger than the Wave Ratio (SWR) (the ratio between the
wavelength there cant be neglected the maximum and minimum amplitudes of the total
propagation of the signals along them. That's why waveform-which occurs at 1/4 wave length away
in microwaves even the simplest circuits must be from the maximum), will in this case be greater
considered as transmission lines, in which the than one.
propagation phenomena are not momentary but The SWR is a sensitive indicator of
they are produced with a finite velocity, and so mismatch on a line. If the impedance match is
along them there do appear the dephasation. perfect there is no reflected wave, so the ampgitud
In any transmission system, a source sends of the total waveform is constant along the
energy to a load (the forward wave). The power transmission line. In this case SWR = 1 and this
has to go somewhere. If it isn’t absorbed it m#st b  situation tells us that maximum power is
reflected. The difference between forward and transferred to the load.
reflected power flow is the power delivered to the The impedance we measure also varies
load. along the transmission line because it is the total
The transmission network is designed in the voltage on the line divided by the total current on
ideal case such that the characteristic impedancesthe line. We have the following total line voltage:
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V=V, +V_ and similarly: I =l +I_. On a

lossless line the current in the forward wave is in
phase with the voltage but the current in the
backward wave is oppositely. So even if the

from the generator, whereas for the negative
traveling waves the phase advances with increasing
distance from the generator) (see[5]).

We can use Smith charts to determine input

forward wave voltage and forward wave current impedances and how values of complex impedance

are fixed (their ratio is the characteristic impecka ~ &ffect the complex  reflection coefficient, for
of the line), because of the fact that the backward €xample what complex reflection coefficient
wave phaser swing around, the impedance variesWould result from connecting a particular load
along the line (see [2, 3, 4]). impedance to a system having a given
So the impedance measured at a point along characteristic. The Smith chart is more than atchar
a transmission line depends not only on what is it iS @ graph method needed to describe the
connected to the line, but also on the properties o characteristics of microwave and it represents a
the line, and where the measurement is made SPecial bidimensional graph for the coexistence of
physically along the line, with respect to the load COMPplex impedance and complex reflection

The total backward wave amplitude divided to the
total forward wave amplitude gives a complex
dimensionless number, named gamma, (the
complex reflection coefficient) which is related to
how much is reflected at the end of the line and
how far the reflecting point is.

There exists a relation between the complex
dimensionless number gamma at any point along
the line to the normalized load impedance Z/Z,

(a complex dimensionless quantity too):
_1+T r= 7z -1
1-r’ 7 +1
The normalized impedance at the point P is what a
generator would see if we cut the line at this poin
P and connect the remaining transmission line and
its load to the generator terminals.

Gamma is related to the SWR by the

relation:

or

1+
1-|r]

It is well known that the complex amplitude
of a wave may be defined in three ways: voltage
amplitude, current amplitude, or normalized

amplitude. It is represented, in each situationaby
complex phaser whose length is proportional to the

SWR=

size of the wave and whose phase angle tells us theW

relative phase with respect to the origin or zero o
the time variable. That's why we use complex
arithmetic and algebra: to express both amplitude
and phase angel information with a single symbol.
On a lossless transmission line the waves
propagate along the line without change of

amplitude and that's whyl'| doesn’t depend on
the position along the line. The phase angle of the

coefficient information. It is an invaluable aidrfo
the design of impedance-matching networks.

We can also treat the problems of
impedance-matching networks finding analytical
solutions as we proceed in this paper.

2. Using stubsfor impedance-matching
transmission lines

Matching the impedance of a network to the
impedance of a transmission line has two principal
advantages. First all the incident power is detider
to the network. Second the generator which is
usually designed to work into an impedance close
to common transmission line impedances would
pull the generator frequency, and also the lin¢ tha
connects the generator to the load would not be
resonant.

One can match the impedance of a load to
the impedance of a transmission line using for
example stubs (see [2, 5]). These are shorted or
open circuit lengths of transmission line intended
to produce a pure reactance at the attachment
point, for the line frequency of interest. Any valu
of reactance can be made, as the stub length is
varied from zero to half a wavelength. It is
important to notice that if we add a half
avelength to the stub length the reactance of the
stub comes back to the same value, so that's why
in practice the stubs are made in the range 050 0.
wavelengths long.

Because it is difficult to make a perfect
nonradiating open circuit s there are always some
effects on the line, there are more often used the
short circuit stubs as they have less radiatiomfro
the ends.

A stub may be placed in series with one of

wave complex amplitude varies as we move along the transmission line conductors but when it is

the transmission line (for the positive traveling dijfficult to do this the stub and the transmission
waves the phase decreases with increasing distancgine are connected in parallel. There are not big
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differences between the two cases, but we consider As we see from the above paragraph each
in this paper the case of short stubs connected inload to be matched asks for its proper valuel for
parallel with the transmission line and we follow and so arises the biggest inconvenient of this

the ideas given in [6]. matching circuit if different load impedances have
There can be used one, two, three or more to be matched.
such stubs. An alternative method uses two stubs but it

The single stub tuner is perhaps the most has the inconvenient that it doesn’t mach any load,
widely used matching circuit. It can match any as we would see.
load, but if the load impedance changes, to adjust
single stub tuner is very difficult, because thebst  2.2. The case of two stubs

must be removed, the line must be fixed at the I, B I, A
break and a new position and a new length have to +——>
be determined. fdz Iz' d
Two stubs attached to the line at fixed points
of attachment may be tuned by altering their 7, 7,
lengths but, as we would see from the following

paragraphs, solution does not exist for all situeti
(load impedances). That's why usually there are
used three stubs which are generally spaced to

unequal intervals. Triple stubs can match any load. We consider that the two short stubs are
_ connected in parallel at points A and B, A situated
2.1. Thecase of asingle stub at distancd; from B, and B at distande from the
I A load we have, A and B having fix positions, as in
<— the above figure.
/ We have:
d -
YA = y|]_ + yStl ’ (4)
z, Z, and similarly
YB = VYot Ysty ©))
whereya = Ya/Yo andys = Yg/Y, are the normalized
admittances at the connection  points,
/ Ystj =-ictgBd;, i = 1, 2, the normalized stubs

For this case the Smith chart can be used for admittances, d; being the corresponding stub
example to find the stub length, but also an length,

analytical solution may be found. _ Yg titgBly _ Y titgBlp
We have the relation: M vivatopl, T 12 1+iytgpl, ©)

Ya =Y + Y, 1) y =g +ib,, g the normalized conductance of the
where Y, = 1/Z, is the admittance at the stub load andy the normalized susceptance of the load.
location A, Y, the wave admittance at distance The matching condition is
from the load andyy the admittance of the stub ya=1. (7)

(a short-circuited stub).

) ) As we can see if the normalized admittance
We have the following expressions:

of the load is known we can evalugte

Yst = —iYoctoBd , (2) Denoting by
Yl :Yoﬂ , rl :||_I |e_2|BI , (3) OB = Rdylz) and bbe : Im(y|2)
1+1 we can write thatyg = gg +ibg —ictgBd,, and
wherep represents the wave number. further
The matching condition is thafy =Y, and Vg = gg +i(bg —CtgBd,) . (8)

after some calculus (equating real and imaginary
parts of the resulting equation) the solution is
obtained. It consists of two values: the values for
d — the stub length- anld— the distance from the
load for the stub position.

From the matching condition we deduce two
equations for real numbers and after solving them
we obtain the distancel andd,. These equations
are:
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ctgBd, =bg b, 9)
_1-DbtgBl; -9p
ctgfdy =—————= 10
' ggtoBly 10
whereb:ctgﬂlliqlgBigl—gB ), and
g1 =1+ctg?ply= (11)

Sin’ply
There are obtained solutions only when the
existence condition is satisfied, in fact when

01298, (12)

The corresponding conductance to use in
formula (12) is (the first two stubs see the lo&d o
conductance):

_ achrtg?ery)
=T 2 22 ) (16)
(b'tg(B12)-1* + acta*(Bl2)
This is used to findls.
So d; is adjusted to ensure the condition:
9 =01-
In order to manipulate this condition more

easily we introduce a new parameter, nofed
which satisfies the conditioh< ,1 such as:

and there are more than one solution for these gg = fg;

situations.

2.3. The case of three stubs

l3 C LB A
—rt—r—»
f (11

fdg f (12
Zy

Z

For the case of three short stubs situated at

distancedy, I,, I3 as in figure bellow, the third stub
is used for ensure the condition:

01208
wheregg represents the conductance in point B.

In this case the total admittance in B consists
of: the total admittance in C, that one that
corresponds to line of length and of course that
from the second stub:

Replacing this expression in (16) we obtain:

2
foy = — 9(:(1”29 (,5;2))2 1 17)
(btg(A2)-1)° + géta”(A2)
and denoting byg, =+ further we get the
sin(Bl2)
equation:
(b -ctg(A,))? = 27C - g2 (18)

foy
We deduce from the above equation the two
solutions forb':

b =ctg(A,)+ /%{1—%} , (19)
where
F=—92_ (20)
919c

Because sometimes one can choose a
smallness value fdrsuch ad > F we shall consider
in relation (19) instead dfanother parameter, noted
r, given by the following condition:

_ yc +itg(Blp) _. fif f<F
=—=——=_—£s—ictgBd,. 13 = _
1+iyctg(Bl,) (13) "Z1E otherwisé (21)
For the point C we have: We get:
_ i +itg(Bl3) _. _ o
=2 " SW30 _jctgBdy = g +ib, ' clq-"
1+iytg(Bl3) 9Pds =dc (14 b =ctg(Bl,)+ g;frc (1_Ej (22)
where, . Y
b = b - ctgBds, the two §o|ut|ons fO'Ib (by,by), and further the
it ( | ) two solutions fords, given by the equation:
gczR{yu +itg (Bls J CtgBds = b — b (23)
1+iytg(Bl3) (15) 1
; dsq =arctg
_ o i +itg(Bl3) 3t [ - J
b = Im( _ | be by
1+|yltg(B|3) and
Because the normalized admittance of the
load is known, and also the paramefesndls, we d3p = arctg( — ] (24)
can use a computer to evalugteandbc. be ~b;
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In order to bring these solutions within the
minimum interval [O\/2] we reduce them modulo
M2.

These two solutions replaced in relation (14)
allow us to know two complex values for the
admittances in point G/cy, Yeo.

For the first value we obtain:

Yc1=9c1 +ibcy —ictgBdz; =gcp +iby,  (25)
_ yea+itg(Bly) _.

= —ictgpd-,
YBL 1+iycitg (Bl ctghdz (26)
YB1 = 9p1 +ibgy —ictgBdy, (27)

2
+t [

B = gCl(l g (B 2)) :RdyBl) (28)

(Hita(Bl2) 1) + gita®(Bl)

The lengths of the first and the second stub
can be obtained from the equations:

ctgBdpq =bgy —by, (29)
_1-bitgBl - gp1
ctgBdy =————————=, 30
U ggtoBl (30)
where
by = ctoBly + /91 (01 ~ 9p1) - (31)

As we can seb; has in this case two values,

bll and bfso we deduce two values for the length

of stub number two and two values for the length
of the first stub.

We get:
1
arctg[ 1}
gk, = bgy —bi
21~ B :
(32)
1
arctg[ ZJ
42 = bgy —bj
21~ :
B
for the length of the second stub and
arctg Ip1t9A J
b = 1- gpy - bitgA;
1= B :
(33)
arct gBltgﬁz"l J
42 = 1-9gg —bitghh
11 B

for the first stub.

After their evaluation we reduce them

moduloA/2, from the same reasons as in cass.of
For the second value af;, ds, doing as
before, we deduce two new values for the length of
stub number two and two values for the length of
the first stub.
So the problem has for solutions.

3. Computer code and numerical results
The analytical solution from the above
paragraph, for the case of three short stubs, ean b
the source for a computer code as the expressions
found for the stubs lengths can be fast and easily
evaluated using a computer. We use MATHCAD
to make such a computer code and with it we have
obtained some numerical results. The computer
code needs as input dates:
¢ the impedance of the transmission lidg:
¢ the load impedanca;
e the distances,, |,, |3 between the stubs, and
between the last stub and the load;
® the smallness paramefes 1;
® the wave length. to deduce the wave number
(or directly the wave numbep)( = 2r/A).
The main steps of the computer code are:
1. The evaluation of the normalized admittance
and of the real numbers given by relation (15);
2. The evaluation dfy, 9o, F, 1;
3. Getting the two solutions fa, with (22);
4. For each of the solutions obtain at the step
before we get a length for stub three;
5. Reducing these lengths modl@g;

6. The evaluation ofycy, Yco, 98+ 9B, bp;

bB X

2 )

7. Getting the solutions fds, first two solutions
for the case ongl, and then other two for

9B, - using (31);
8. The evaluation of the lengths for the second
and the first stub, using (32), and (33).

As outputs we get the stubs lengths (all the
forth solutions): two values for the lengths of the
third stub, and for each of them two solutions for
the other lengths.

We run this computer code for different
input dates and we present in the following
paragraph the following results obtained.

For the first example we consider that the
input dates are:

Zo=2+4
Z=3+2
[ =0.583
[, =0.583
|3 =35
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f=0.9 d112= 0.2388
A =0.35 d222= 0.2022
We get the following solutions for the stubs di = 0.2004
lengths: ObservationThe distancek, I,, I3 can be given in
ds; = 0.1424 terms of number of wavelength, so they may be
d;» =0.1106 represented by dimensionless numbers (we can
di11=0.1288 give instead ofly, |5, I3, the numbersy, ny, ng),
dy11=0.1536 using the relationd; = nA, i = 1, 2, 3. In this case
dyp = 0.1449 the stubs lengths are also dimensionless numbers,
di»1 = 0.1008 given in terms of wavelength numbers too. For this
dr1»,=10.119 case the reduction must be made by modulo 0.5,
di1>,=0.1288 and we can run the program without respect,to
dy = 0.0784 for all cases.
d122 =0.1008
For the second example the input dates are: References
Z,=5+3 1. Constantin, P., Birca-Galateanu, étclustrial electronics.
Z=7+12 “Didactica si Pedagogig” Publishing House, Bucharest,
l. = 0.075 1983 (in Romanian).
1 e 2. Lojewski, G:Microwave devises and circuitéTehnici”
l,=0.1 Publishing House, Bucharest, 2005, ISBN 973-31-2263
[3=0.2 Romanian).
f=09 3. Sandu, D.DElectronics devices and circuittDidactica si
A=0.6 Pedagogi#’ Publishing House, Bucharest, 1975 (in
For thi th | ti . Romanian).
or this case the solulions are: 4. Dumitrescu, |., etcElectronics and electrical machines.
ds; = 0.2058 “Didactica si Pedagogig” Publishing House, Bucharest,
ds>,=0.1842 1983 (in Romanian).
di;; = 0.2388 5. Saad, TH. (editor):Microwave Engineer's Handbopk
Ao = 0.264 Artech House, New York, ISBN 978-0890060032 1971.
21 6. Orfanidis, S.J.:Electromagnetic Waves and antennas,
dp21 = 0.2388 Rutgers University, 2004. Available: http://www.gaggers.
di»1 = 0.2064 edu/~orfanidilewa/
d212 =0.252
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