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Abstract. On the basis of a qualitative analysis of nonlinear di fferential equation, which describes the behavior of the 
oscillating system mass-spring-magnet, a dynamical synthesis is performed. The magnetic force is obtained using the 
finite element method and approximated by an analytical expression. The parameters of the system which ensure 
periodical oscillations with given properties are determined. 
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1. Introduction 

The tasks of dynamical synthesis of mechanical 
systems come down to determining of mass and 
force parameters depending on preliminarily 
described manner of behavior. For example, in the 
Theory of Mechanisms and Machines a typical 
problem of such a kind is the finding of the moment 
of inert ia of a flywheel, which ensures a given 
irregularity of motion [1]. Tasks of the same type 
concern the t ime-response or the durability of 
transient states [2, 3]. 

Magneto-mechanical systems are with 
sophisticated characterist ics and the description of 
their behavior is based on solving of nonlinear 
ODEs [4, 5], and in the general case it  relates to 
investigation of complicated dynamical processes 
which are described by PDEs [6]. The choice of the 
parameters of such a system also can be added to 
the tasks of the dynamical synthesis, as far as such a 
choice can guarantee some requested properties of 
the real system.  

At the present paper a nonlinear oscillat ing 
system of the type mass-spring-magnet is 
investigated. On the basis of a qualitat ive analysis a 
method for achieving of given parameters of the 
oscillat ions is proposed.  

 
2. Magnetic force determination 

The basic elements of the system are shown in 
Figure 1. Ferromagnetic mass is fixed to the free 
end of cantilever and oscillates in the force field of 
a permanent magnet. When the cantilever is in 
undistorted shape and it is in horizontal posit ion 
between the faces of ferromagnetic mass and 
magnet, an init ial air gap h is established. A linear 
generalized coordinate y is chosen for describing of 
the mass oscillat ions. Zero posit ion of this 
coordinate corresponds to the horizontal posit ion of 
the cantilever.  
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Figure 1. Scheme of the oscillating system 

 
In order the oscillat ing system to be 

qualitat ively investigated, it  is necessary to be 
determined the force dependence on the posit ion. 
This function is worked out for any particular case 
and it depends on dimensions, shape and material 
properties. 

For more precise determination of the magnetic 
force it  is made an investigation of the magnetic 
field by FEM. The system that is investigated is 
shown in Figure 2. It  consists of a cylindrical 
permanent magnet 1 and a ferromagnetic cylinder 2, 
disposed over the magnet. All dimensions are 
denoted in Figure 2.  
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Figure 2. System for determining of magnetic force  
1 – permanent magnet; 2 – ferromagnetic cylinder 
 
The magnetic field is analyzed as an axe-

symmetrical one. The task of analysis is formulated 
by Poisson’s equation with respect to the magnetic 
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vector-potential in the cylindrical coordinate 
system. The investigated area is determined as 
sufficient large buffer zone (of the order of  
20-mult iple dimension of the system) at the 
boundary of which they are imposed homogenous 
boundary condit ions of Dirichlet. 

The problem is solved with the help of the 
software product FEMM (Finite Element Method 
Magnetics), and for automation of the calculations 
some programs in the Lua Script® language are 
created. For determining of the magnetic force the 
built  in tension tensor of Maxwell is used. The 
number of mesh nodes of the finite elements varies 
for the different tasks between 18,000 and 20,000.  

Investigations are made for two types of 
permanent magnets (BaFerrite and NDFeB) and two 
dimensions of the diameters (8 and 13 mm). Results 
for the magnetic field distribution and for the 
attractive force between magnet and ferromagnetic 
cylinder are obtained when the air gap changes from 
1 to 5 mm.  

Magnetic field lines for diameter 8 mm and 
permanent BaFerrite for air gaps 1 and 5 mm are 
visualized in Figures 3a and 3b. For the same 
dimensions an investigation is made for the 
permanent magnet NdFeB. Results for the magnetic 
field distribution are given in Figure 3c. 

As a consequence, there is no a principle 
difference in the distribution field patterns of both 
types of magnets. However the difference in terms 
of force is significant, which can be observed in 
Table 1. For the magnet of NdFeB the mean 
magnetic force is more of 60 t imes bigger than the 
same force in the system of BaFerrite. 

 

Table 1. Force variation 
Force [N] 

δ [mm] 
BaFerrite 
8/15/10 

NdFeB 
8/15/10 

BaFerrite 
13/8/5 

1 0.121 8.50 0.209 
1.5 0.091 5.92 0.158 
2 0.065 4.13 0.118 

2.5 0.046 2.95 0.089 
3 0.033 2.17 0.068 

3.5 0.026 1.63 0.053 
4 0.019 1.20 0.041 

4.5 0.014 0.90 0.033 
5 0.011 0.70 0.026 

 
The obtained force data are approximated by 

the relation 

( )20 δ+δ

κ=mF  (1) 

which is close to Coulomb’s low [7] when δ0 is 

small. Analogically to this law here κ is denoted as 
an imaginary magnetic mass, δ0 is an imaginary 
init ial gap. The constant values and maximal 
deviations are shown in Table 2. The graphs of the 
approximating functions are presented in Figure 4. 

 

 a) 

  b) 

 c) 
Figure 3. Magnetic field lines distribution for δ = 1 mm 

and δ = 5 mm 
а) NdFeB d = 8 mm; hm = 15 mm; hc = 10 mm;  

b) BaFerrite d = 8 mm; hm = 15 mm; hc = 10 mm; 
c) BaFerrite d = 13 mm; hm = 8 mm; hc = 5 mm 
 

Table 2. Constant values and maximal deviations  
Material 

dimensions 
d / hm / hc 

κ  
×10-7 [N·m2] δ0 [m] 

Max. 
deviation 
×10-6 [N] 

BaFerrite 
8/15/10 

6.2681702 0.0012348 0.00086 

NdFeB 
8/15/10 35.921246 0.0010328 0.207×10-6 

BaFerrite 
13/8/5 

1.4354750 0.0015858 0.000124 

 
3. Dynamical model of the oscillating system 

A mathematical model of the beam is created, 
taking in account the following more important 
simplified assumptions: all kinds of resistance are 
neglected; the influence of the distributions of all 
kind of loads is neglected, it  is assumed that the 
mass moves rectilinearly and its rotation is ignored. 
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 a) 

  b) 

  c) 
Figure 4. Approximated static characteristics of 

investigated cases: а) magnet BaFerrite and dimensions  
d = 8 mm; hm = 15 mm; hc = 10 mm; b) magnet NdFeB 

and dimensions d = 8 mm; hm = 15 mm; hc = 5 mm;  
c) magnet BaFerrite d = 13 mm; and dimensions hm = 8 

mm; hc = 5 mm 
 
According to Figure 1 for magnetic force (1) it 

is yield 

( )20 yh
Fm

−+δ

κ=  (2) 

because δ = h – y. On the mass it  exerts influence 
the elastic force of the cantilever  

ycFe ⋅−=  (3) 
and the weight  

G = m·g, (4) 
where c is the spring stiffness, m is the mass, and g 
is the gravity acceleration.  

The motion of the mass in the free cantilever 
end is described by the differential equation  

( )yh
gmycym

−+δ
κ+⋅=⋅+⋅

0

&&  (5) 

which after dividing to m takes the view 

( )yhm
gyky

−+δ
κ+=⋅+

0

2
&&  (6) 

where k is the natural frequency of the system. For 
the stroke constrains of the cantilever it  follows that 
y ≤ h. 

After substituting h0 = δ0 + h, introducing 
dimensionless t ime tnew = k2·t and change of the 
variable  

ξ−= 0hy  (7) 
the differential equation (6) takes the form  

02 =
ξ
β+α−ξ+ξ&& . (8) 

Here are denoted the following parameters  

20
k

g
h −=α ,  

2km⋅

κ=β . (9) 

For the change of the variable it  follows the 
constrain  

0δ≥ξ . (10) 

By the energy transformation 
ξ

ξ=ξ
d

d 2

2

1 &
&&  the 

differential equation is yield  

2

2

2

1

ξ
β−ξ−α=

ξ
ξ
d

d&
 (11) 

from which after separating of the variables the first 
integral is worked out  

C+
ξ
β+ξ−αξ=ξ 22

2

1

2

1
& . (12) 

By the so obtained expression after substitution 
with different values of the integrating constant C 

the phase trajectories in the plane ξ& , ξ  of the 
oscillat ing system can be described [8]. 

 
4. Determination of the bifurcation areas 

Bifurcation zones are determined by the values 
of the parameters α and β  for which the phase states 
of the system change its nature. For these states to 
be worked out the function  

ξ
β+ξ−ξ⋅α= 2

2

1
f , (13) 

is considered, which completely determines the 
phase trajectories. For this purpose Eq. (13) is 
presented as a sum of two functions  

21 fff +=  (14) 
where 

2
1 2

1 ξ−ξ⋅α=f ,    
ξ
β=2f . (15) 

From (9), β  is a posit ive nonzero parameter but 
α theoretically can be also negative and zero 
parameter. The negative values of α are possible 
when simultaneously the air gap h and the 
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imaginary gap δ0 are small, and the natural 
frequency k is low. Such values are relatively rarely 
used in the techniques. It  is known that the function 
f2 is discontinuous for ξ = 0 and it is strict ly 
monotone decreasing. The function f1 is a parabola 
with a zero root and a second root equal to 2α. They 
are possible two variants of the sum function f. The 
first one is it  to be a strict ly monotone decreasing 
function, and the second one is it  to possess two 
extremes. At the first case there will not be a 
singular point in the phase trajectories. At the 
second case two singular points will occur, that 
correspond to the stable and unstable equilibrium 
points. The limit case between the two states is a 
point of inflection in the function f. For this it 
follows the appearance of a cusp point in the phase 
trajectories. From this limit state the condit ion of 
bifurcation is obtained, which is expressed as 
simultaneously null of first and second derivation of 
f. It  follows to the system 

02 =
ξ
β−ξ−α ;      01

2
3 =−

ξ
β

. (16) 

From the system (16) it  is obtained 

3

2

1 ξ=β ;    ξ=α
2

3
, (17) 

which is a parametric equation of the bifurcation 
curve. After isolating of the parameter ξ the 
equation of the bifurcation curve  

3

27

4 α=β  (18) 

is obtained. The graph of this curve is presented in 
Figure 5. 

 
Figure 5. Bifurcation curve 

 

From the above mentioned it follows that for 
values of α and β  over the bifurcation curve, i.e. 
when  

3

27

4 α>β  (19) 

condit ions for oscillat ions do not exist. In case of 
this combination of the parameters the mass will  
accomplish only one displacement with variable 
acceleration. The closer to the magnet is the mass, 
the higher is its velocity. This kind of motion and 
the functions f,  f1 and f2, are shown in Figure 6. 
Vice versa, if α and β  are with values under the 
bifurcation curve, both oscillat ing or aperiodical 
one-way motion are possible. This kind of motion 
and the functions f,  f1 and f2 are shown in Figure 7. 

 
 

 
Figure 6. Typical phase portraits of the system with 

values of α and β over the bifurcation curve 
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Figure 7. Typical phase portraits of the system with α 

and β under the bifurcation curve 
 

5. Equilibrium point investigation 
The equilibrium or singular points [5, 7, 8] of 

the oscillat ing system follow from the system of 
algebraic equations 

0=ξ&& ,      0=ξ& . (20) 

The second equation shows that the singular 

points lie on the axis Оξ& . From the first equation 
taking of account (8) it  follows  

02 =
ξ
β−α+ξ−  (21) 

or for ξ ≠ 0 it  is yield 

03 =β−ξ⋅α+ξ− . (22) 

This cubic equation [9] has a discriminate  

23

4

1

27

1 β+α⋅β−=D . (23) 

In order the Eq. (22) to possess three different 
roots it  is necessary  

0
4

1

27

1 23 <β+α⋅β−=D , (24) 

from where the condit ion is yield  

3

27

4 α<β . (25) 

This result confirms again the proof that the 
equilibrium points can exist only if the parameters 
α and β  are chosen under the bifurcation curve. In 
this case there are three equilibrium points, but as it 
can be seen on Figure 7, only two of them are 
posit ive. This statement can be proved easily. The 
equilibrium point with the biggest posit ive 
coordinate is a stable center. The second posit ive 
equilibrium point is an unstable saddle. Through it 
the phase curve S passes, called separatrix. This 
separatrix splits the phase plane in areas with stable 
oscillat ions and areas with aperiodical single 
displacements with variable accelerations. 

 
6. Dynamical synthesis of the oscillating system  

The aim of the dynamical synthesis of the 
magneto-mechanical system is expressed here in 
finding of such combination of the parameters, 
which guarantees periodic oscillat ions.  

First ly, a magnet couple with imaginary magnet 
mass κ = 0.6268×10-6 Nm2 and imaginary init ial 
gap δ0 =1.2348×10-3 m according to formula (1) is 
chosen. From the expressions (9) with a given 
natural frequency k = 400 s–1 it  is found  
α = h0 – g/k2 = 0.004172. A mass m = 0.005 kg is 
chosen and the condit ion (24) is checked up, finding 
init ially β  = κ / m·k2 = 7.924×10-10 and after 
substituting in β > 4α3 / 27 = 1.075×10-8 – obtaining 
the necessary relation. The stiffness of the system is 
found by c = m·k2 = 800 N/m. The obtained 
parameters are sufficient for choosing the rest of the 
geometrical parameters and material properties.  

The so chosen values do not guarantee oscilla-
t ions with the prescribed mechanical frequency, 
because the system is nonlinear and in the considered 
case it is proved that the natural frequency is lower 
than the mechanical one. On bigger amplitudes 
because of isohornity of the system the frequency 
depends on the initial condit ions.  

The shape of the synthesized functions f,  f1,  f2 
and phase portrait of the system is shown in Figure 
8. From the figure it  can be seen that the system has 
only one singular point corresponding to an 
equilibrium point of type focus. The next 
equilibrium point which is unstable gets in the zone 
ξ < δ0 and it  could not be reached because of the 



Dynamical Synthesis of Oscillat ing System Mass-Spring-Magnet 

 RECENT, Vol. 10, no. 1(25), March, 2009 55 

stroke constraint. The same is relevant to the third 
equilibrium point, which is negative. The constraint 
ξ ≥ δ0 changes the nature of motion of the system 
for the area inside the separatrix S, because here 
constraints for the periodical motions appear and in 
this way they turn in aperiodical ones. 

0δ
 

Figure 8. Phase portrait of the synthesized system 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7. Conclusion  
The qualitat ive analysis of the considered 

magneto-mechanical system allows the properties 
of the system to be discovered. This analysis is a 
unique mean of studying similar systems in the 
cases when the differential equation is nonlinear 
and cannot be solved exactly, or it  leads to solutions 
which cannot be analyzed. On the base of the 
qualitat ive analysis it  is possible a preliminarily 
dynamical synthesis of the real oscillat ing system to 
be achieved.  
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