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Abstract. On the basis of a qualitative analysis of nonliraifferential equation, which describes the bebawaif the
oscillating system mass-spring-magnet, a dynansipgathesis is performed. The magnetic force is abthiusing the
finite element method and approximated by an aitalyexpression. The parameters of the system whiture
periodical oscillations with given properties astaimined.
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1. Introduction . ) ) Elastic cantileve
The tasks of dynamical synthesis of mechanical A B X
systems come down to determining of mass and ‘

force parameters depending on preliminarily

described manner of behavior. For example, in the Ferromagnetic mas h

Theory of Mechanisms and Machines a typical : '

problem of such akind isthe finding of the moment I_l@

of inertia of a flywheel, which ensures a given E magnet
irregularity of motion [1]. Tasks of the same type Figure 1. Scheme of the oscillating system
concern the time-response or the durability of

transient states[2, 3]. In order the oscillatihg sysem to be

Magneto-mechanical systems are withqualitatively investigated, it is necessary to be
sophisticated characteristics and the descriptfon odetermined the force dependence on the position.
their behavior is based on solving of nonlinearThis function is worked out for any particular case
ODEs [4, 5], and in the general case it relates t@nd it depends on dimensions, shape and material
investigation of complicated dynamical processegroperties.
which are described by PDEs [6]. The choice of the = For more precise determination of the magnetic
parameters of such a system also can be added force it is made an investigation of the magnetic
the tasks of the dynamical synthesis, as far ds auc field by FEM. The system that is investigated is
choice can guarantee some requested properties sifiown in Figure 2. It consists of a cylindrical
the real system. permanent magnet 1 and a ferromagnetic cylinder 2,

At the present paper a nonlinear oscillatingdisposed over the magnet. All dimensions are
system of the type mass-spring-magnet isdenoted in Figure 2.
investigated. On the basis of a qualitative anagsi
method for achieving of given parameters of the
oscillations is proposed.

2. Magneti c for ce determinati on

The basic elements of the system are shown in
Figure 1. Ferromagnetic mass is fixed to the free
end of cantilever and oscillates in the force field
a permanent magnet. When the cantilever is in
undistorted shape and it is in horizontal position
between the faces of ferromagnetic mass and Figure 2. System for determining of magnetic force
magnet, an initial air gap is established. A linear 1 — permanent magne2;— erromagnetic cylinder
generalized coordinateis chosen for describing of
the mass oscillations. Zero position of this  The magnetic field is analyzed as an axe-

coordinate corresponds to the horizontal positibn oSymmetrical one. The task of analysis is formulated
the cantilever. by Poisson’s equation with respect to the magnetic
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vector-potential in the cylindrical coordinate small. Analogically to this law heneis denoted as
system. The investigated area is determined agn imaginary magnetic mas§, is an imaginary
sufficient large buffer zone (of the order of jnjtial gap. The constant values and maximal
20-multiple dimension of the system) at thedeviations are shown in Table 2. The graphs of the

boundary of which they are imposed homogenougipproximating functions are presented in Figure 4.
boundary conditions of Dirichlet.

The problem is solved with the help of the
software product FEMM (Finite Element Method
Magnetics), and for automation of the calculations
some programs in the Lua Scfiptanguage are %
created. For determining of the magnetic force the
built in tension tensor of Maxwell is used. The
number of mesh nodes of the finite elements varies
for the different tasks between 18,000 and 20,000. a)

Investigations are made for two types of
permanent magnets (BaFerrite and NDFeB) and two 1
dimensions of the diameters (8 and 13 mm). Results I
for the magnetic field distribution and for the ﬂ
attractive force between magnet and ferromagnetic
cylinder are obtained when the air gap changes from
1to5mm. b)

Magnetic field lines for diameter 8 mm and
permanent BaFerrite for air gaps 1 and 5 mm are
visualized in Figures 3a and 3b. For the same 7,
dimensions an investigation is made for the : L/
permanent magnet NdFeB. Results for the magnetic | |
field distribution are given in Figure 3c. il }

As a consequence, there is no a principle ! |
difference in the distribution field patterns oftho — TR
types of magnets. However the difference in terms
of force is significant, which can be observed in _ _ o c)
Table 1. For the magnet of NdFeB the mean Figure 3. Magnetic field lines distribution ®r=1 mm
magnetic force is more of 60 times bigger than the ands =5 mm

. . a) NdFeBd = 8 mm;h,= 15 mm:h,= 10 mm;
same force in the system of BaFerrite. b) BaFerited = 8 mm:, = 15 mm:h, = 10 mm:

Table 1. Force variation c) BaFerrited = 13 mm;h,= 8 mm;h.= 5 mm
Force [N]
BaFerrite NdFeB BaFerrite Table 2. Constant values and maximal deviations

o[mm] | 8/15/10 | 8/15/10 13/8/5 Material Max.

1 0.121 8.50 0.209 dimensions _7K , dew_gmon

15 0.091 502 0.158 d/hy/h |x10°[N-mT| &m] | x10°[N]

2 0.065 4.13 0.118 BaFerrite | ¢ 5681702 0.0012348| 0.00086

25 0.046 2.05 0.089 8/15/10

3 0.033 2.17 0.068 g‘igfl% 35.921246| 0.0010328| 0.207x1¢°

3.5 0.026 1.63 0.053 e

4 0.019 1.20 0.041 33,687;6 1.4354750| 0.0015858| 0.000124

45 0.014 0.90 0.033

5 0.011 0.70 0.026

3. Dynamical model of the osdllating system

The obtained force data are approximated by A mathematical model of the beam is created,
the relation taking in account the following more important

K simplified assumptions: all kinds of resistance are
=— (1) neglected; the influence of the distributions df al
(50 +8)? kind of loads is neglected, it is assumed that the
which is close to Coulomb’s low [7] whed, is  mass moves rectilinearly and its rotation is igabre
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Figure 4. Approximated static characteristics of

investigated casea) magnet BaFetrite and dimensions

d = 8 mm;h,,= 15 mm;h, = 10 mm; b) magnet NdFeB
and dimensionsl= 8 mm;h,,= 15 mm;h. =5 mm;
c) magnet BaFerritd = 13 mm; and dimensioii,= 8
mm; h,=5 mm

According to Figure 1 for magnetic force (1) it

is yield
K

F . =
" (Bo+h-y)

(2)

becaused = h —y. On the mass it exerts influence

the elastic force ofthe cantilever

Fo=-cly (3)
and the weight

G=mg (4)
wherec is the spring stiffness) is the mass, angl
is the gravity acceleration.

The motion of the mass in the free cantilever

end is described by the differential equation
K

my +cly=mlp+—— 5
Gorh-y)

which after dividingtan takesthe view
"+k2 = +—K 6
y+k“y=g B+ hy) (6)

wherek is the natural frequency of the system. For
the stroke constrains of the cantilever it folldhst
y<h.

After substitwingh, = & + h, introducing
dimensionless timd,., = K.t and change of the
variable

y=hy-¢ (7)
the differential equation (6) takes the form
E+i-a +% =0. (8)
Here are denotedthe following parameters
- g __XK
a=hy =, B= : (9)
k? mik?

For the change of the variable it follbws the
constrain

£§29;. (10)
L 1 ck2
By the energy transformatloriz2 the
differential equation is yield
1d¢? B
LM 11
TR (11)

from which after separating of the variables thet fi
integral is worked out

1:2 1.2 B
=& =0 =& +=+C. 12
ZE 3 ZE : (12)
By the so oltained expression after substitution
with different values of the integrating const&ht

the phase trajectories in the plage & of the
oscillating system can be described [8].

4., Determination of the bifurcation areas

Bifurcation zones are determined by the values
of the parameters andB for which the phase states
of the system change its nature. For these states t
be worked out the function

—qra_t2, B

f=alg ZE £

is considered, which completely determines the

phase trajectories. For this purpose Eq. (13) is
presented as a sum oftwo functions

f = f1+f2

(13)

(14)
where

1
f1=atz——2&2,

From (9),B is a positive nonzero parameter but
a theoretically can be also negative and zero
parameter. The negative values afare possible
when simultaneously the air gap and the

f =% (15)
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imaginary gap & are small, and the natural From the above mentioned it follows that for
frequencyk is low. Such values are relatively rarely values ofa andf3 over the bifurcation curve, ie.
used in the techniques. It is known that the fuomcti when

f, is discontinuous for§ = 0 and it is strictly 4 3
monotone decreasing. The functifhnis a parabola B >2_70‘ (19)

with a zero root and a second root equaldoley  conditions for oscillations do not exist. In cade o
are possible two variants of the sum functiiohe  this combination of the parameters the mass will
first one is it to be a strictly monotone decregsin accomplish only one displacement with variable
function, and the second one is it to possess twacceleration. The closer to the magnet is the mass,
extremes. At the first case there will not be athe higher is its velocity. This kind of motion and
singular point in the phase trajectories. At thethe functionsf, f, andf, are shown in Figure 6.
second case two singular points will occur, thaty;ce versa, ifa andB are with values under the
correspond to the stable and unstable equilibriumyifyrcation curve, both oscillating or aperiodical
points. The limit case between the two states is gne-way motion are possible. This kind of motion

pOInt Of |nﬂect|0n in the funCtlorTf For thIS |t and thefunctions fl andf2 are ShOWﬂ in Figure 7.
follows the appearance of a cusp point in the phase

trajectories. From this limit state the conditioh o
bifurcation is obtained, which is expressed as
simultaneously null of first and second derivatddn

f. It follows to the system

2_

O(—E—E—Bzzo; 5—2—1=0. (16)
From the system (16) it is obtained

:l 3. :E 17

B ZE ;o 26, (17)

which is a parametric equation of the bifurcation

curve. After isolating of the parametey the
equation of the bifurcation curve i
4 3
=—q (18)
P 27
is obtained. The graph of this curve is presenbed i
Figure 5.
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Figure 6. Typical phase portraits of the systenhwit
values ofx andf3 over the bifurcation curve

Figure 5. Bifurcation curve
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Figure 7. Typical phase portraits of the systenhwit
andf3 under the bifurcation curve

5. Equilibrium point investigati on

In order the Eq. (22) to possess three different
roots it is necessary

1.-3,1:7
D =——pM" +=pB“ <0, 24
275 4B (24)
from where the condtion is yield
4 3
<—a°. (25)
P 27

This result confirms again the proof that the
equilibrium points can exist only if the parameters
o andf are chosen under the bifurcation curve. In
this case there are three equilibrium points, kit a
can be seen on Figure 7, only two of them are
postitive. This statement can be proved easily. The
equilibrium point with the biggest positive
coordinate is a stable center. The second positive
equilibrium point is an unstable saddle. Through it
the phase curv& passes, called separatrix. This
separatrix splitsthe phase plane in areas withlesta
oscillations and areas with aperiodical single
displacements with variable accelerations.

6. Dynami cal synthes s of the osd llating system

The aim of the dynamical synthesis of the
magneto-mechanical system is expressed here in
finding of such combination of the parameters,
which guarantees periodic oscillations.

Firstly, a magnet couple with imaginary magnet
massk = 0.6268x10 Nm? and imaginary initial
gap & =1.2348x10 m according to formula (1) is
chosen. From the expressions (9) with a given
natural frequencyk = 400 §' it is found
a =hy—g/k® = 0.004172. A mass = 0.005 kg is
chosen andthe condition (24) is checked up, fipdin
initially B = k / mk = 7.924x10° and after
substituting ir > 40® /27 =1.075x18 — obtaining
the necessary relation. The stiffness of the syssem
found by ¢ = mk = 800 N/m. The ohtained

The equilibrium or singular points [5, 7, 8] of parameters are sufficient for choosing the reghef

the oscillating system follow from the system of

algebraic equations

£=0, ¢=0 (20)

geometrical parameters and material properties.
The so chosen values do not guarantee oscilla-
tions with the prescribed mechanical frequency,

The second equation shows that the singulabecause the system is nonlinear and inthe comsider

points lie on the axi®&. From the first equation

taking of account (8) it follows
B

-&+a —? = (22)
or for§ 20 it isyield
~2+aZ-p=0. (22)
This cubic equation [9] has a discriminate
1,23,.1.2
D=——BLh" +—B“. 23
276 4B (23)

case it is proved that the natural frequency isslow
than the mechanical one. On bigger amplitudes
because of isohornity of the system the frequency
depends onthe initial conditions.
The shape of the synthesized functibng, f,

and phase portrait of the system is shown in Figure
8. From the figure it can be seen that the systam h
only one singular point corresponding to an
equilibrium point of type focus. The next
equilibrium point which is unstable gets in the eon

& < & and it could not be reached because of the
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stroke constraint. The same is relevant to thedthir7. Conclusion

equilibrium point, which is negative. The consttain The qualitative analysis of the considered
& = § changes the nature of motion of the systemmagneto-mechanical system allows the properties
for the area inside the separat8x because here of the system to be discovered. This analysis is a
constraints for the periodical motions appear and i unique mean of studying similar systems in the
this way they turn in aperiodical ones. cases when the differential equation is nonlinear

BLAOEIN - and cannot be solved exactly, or it leads to smhgi

which cannot be analyzed. On the base of the
gualitative analysis it is possible a preliminarily

000000 dynamical synthesis of the real oscillating system
be achieved.
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Figure 8. Phase portrait of the synthesized system
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