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DYNAMIC MODELING OF A VIBRATING SEPARATOR WITH INERTIAL 
EXCITATION CONSIDERING GYROSCOPIC EFFECTS 
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Technical University – Sofia, Bulgaria 
 
Abstract. Subject of this work is examination of vibrating separator dynamical behaviour under directed inertial force 
excitation provided from synchronous spinning of two unbalanced shafts. For that purpose a dynamical model  
representing the separator as system of three rigid bodies and seven degrees of freedom is created, gyroscopic couples 
resultant from unbalanced shafts spinning are accounted. With this model are performed numerical experiments for area 
of small forced displacements around the static equilibrium position. Time and frequency domain characteristics are 
obtained. 
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1. Introduction 

Vibrating separator is intended to sift  fine 
disperse granular materials by non perforated sift ing 
surface. For the purpose of experimental 
examination of sift ing process each point from the 
sift ing surface has to possess equal, rectilinear and 
steady oscillat ion trajectories. 

As was mentioned in [1] the construction of 
vibrating separator (VS) (Figure 1) consists from: 
sift ing surface 1, carried from vibrating frame (VF) 
2. The VF 2 is elastically coupled to foundation 4 
through four identical leaf springs 3. Oscillat ions 
excitation is achieved by directed inert ial force (F) 
owned to the opposite and synchronous spinning of 
two unbalanced shafts (DS) 7. The shafts 7 are 
symmetrically located about mass center (MC) of 
separator. They are set in motion by flexible 
coupling 5 and direct current electrical motor 6, 
fixed to foundation 4. The opposite and 
synchronous spinning of shafts 7 is provided from 
spur gearing situated between them. 

 

Figure 1. 3D SolidWorks model of Vibrating Separator 
 
Main purposes of this work: to build dynamical 

model of VS considering DS as a separate body, 
rotating with respect to the VF. To study the forced 
spatial vibrations of VS provoked from spinning of 

DS; to reveal relations between generalized 
coordinates; to evaluate the sift ing surface 
trajectories. 

Similar dynamical model of VS is developed in 
[1] but the excitation resultant from the DS spinning 
is decreased to directed sinusoidal force, the 
gyroscopic moments are neglected. That 
necessitates creation of more close to the real object 
dynamical model. 

In order to achieve the presented aims is built  a 
dynamical model representing the separator as 
system of three rigid bodies with seven degrees of 
freedom (DOF) (Figure 2). 

 
Figure 2. Dynamical model of Vibrating Separator 
 

2. Assumptions and simplifications 
The dynamical model is built  for vicinity of 

small displacements around the posit ion of static 
equilibrium. For this vicinity a linear elastic 
characterist ic of flexible elements and viscous 
damping is adopted. The mass of treated material is 
small in comparison to the total vibrating mass, 
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hence being neglected. The foundation and the VF 
are absolutely rigid. The inert ial excitation force F 
is always inclined on β with respect to the sift ing 
surface. In static posit ion this force is perpendicular 
to the leaf springs longitudinal axes. 

 
3. Designations and definitions 

Defined are the following coordinate systems 
(CS) (Figures 2 and 3): Oxyz – fixed (reference), 
O1xyz – performs pure translation with axes parallel 
to the axes of Oxyz (point O1 is posit ioned at the 
mass center of the VF), O1x1y1z1 – local (referent), it 
is invariably connected with VF and its axes are 
coincident with the principle axes of inert ia. This CS 
performs relative rotation with respect to CS O1xyz 
and absolute motion with respect to CS Oxyz. At 
init ial position (static equilibrium) the three coordinate 
systems are coincident. Also defined are D1xd1yd1zd1 
and D2xd2yd2zd2 aligned with principle axes of inert ia 
of the two unbalanced shafts. O21x1y1z1 and O22x1y1z1 
these CS are parallel to O1x1y1z1. The axes O21z1 and 
O22z1 are rotation axes of unbalanced shafts (Figure 
3). At init ial posit ion CS D1xd1yd1zd1 and D2xd2yd2zd2 
are rotated on angle β about O1x1y1z1. This angle 
denotes the inclination of inert ial excitation force F 
with respect to the sift ing surface. 

 
Figure 3. Coordinate systems and position vectors 
 
As generalized coordinates (GC) are adopted: 

x, y, z - coordinates of MC (point O1 or p.O1) in the 
fixed CS Oxyz; 

ψ, θ, φ - Eulerian angles [2], here they denote 
rotations about the moving axes, aligned with the 
VF, the adopted sequence of rotation is x-y-z [1]; 

φd – this GC denotes the rotation angle of the two 
DS about axes O21z1 and O22z1. Actually they 
represent two different bodies but because of the 
spur gearing with only one degree of freedom 
with respect to the VF. Here φd is the rotation 
angle of D1xd1yd1zd1 with respect to O21x1y1z1. 

4. Equations of motion 
In order to derive the equations of motion the 

Lagrange's equations are used: 
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( )Tdzyxq ψϕθψ= ,,,,,, - GC vector 
The superscript T is symbol for transpose. 

 
4.1. Kinetic energy of the system T 

211 DDO TTTT ++=  (2) 

1OT - Kinetic energy of VF 

21, DD TT - Kinetic energy of first respectively 
second unbalanced shaft. 
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M and Md are mass of VF and mass of 
unbalanced shaft. Jx1, Jy1, Jz1 and Jxd, Jyd, Jzd are 
moments of inert ia of VF and of unbalanced shaft, 
taken at the center of mass and aligned with the 
principal axes of inert ia. VO1, VD1, VD2 are linear 
velocit ies of p.O1, respectively p.D1 and p.D2. The 
subscripts x, y, z denotes their projections on the 
fixed frame (Oxyz). ω is the full angular velocity of 
VF, ωD1 and ωD2 are full angular velocit ies of the 
unbalanced shafts. The subscripts x, y, z means that 
they are projected on the principle axes of inert ia. 

By [3] for the linear velocity of p.O1 can be 
written: 
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( )TO zyxr ,,1 =
→

- Vector describing posit ion of 
p.O1 in Oxyz CS - figure 3. 

The same expression is used for p.D1 and p.D2: 
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21, DD rr
rr

- Vectors describing the posit ion of 
p.D1 and p.D2 in Oxyz CS (Figure 3). 
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2221, OO rr - Vectors describing posit ion of 

p.O21 and p.O22 in O1x1y1z1. In this CS they are 
constants and represent geometrical dimensions. 
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21, dd rr
rr - Vectors describing posit ion of p.D1 

and p.D2 in O21xd1yd1zd1 and O22xd2yd2zd2. These 
vectors are equal by size. The distance yd is the 
eccentricity of unbalanced shafts. For simplicity the 
current CS are not shown on Figure 3. Their axes 
are parallel to D1xd1yd1zd1 respectively D2xd2yd2zd2. 

( )Tddd yrr 0,0 ,21 == rr
 (8) 

R - Rotation matrix (direction cosine matrix) 
[1, 2]. Fully describes the orientation of O1x1y1z1 
with respect to Oxyz. 

Assuming small oscillat ions (the Euler angles 
ψ, θ, φ remains in the interval of ±5°), the sine and 
cosine functions can be represented only with the 
first member in Tailor’s decomposit ion [4].  
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21, dd RR ϕϕ - Rotation matrixes describing the 

rotation of the two DS around the axes O21z1 and 
O22z1. These matrixes fully describe the orientation 
of D1xd1yd1zd1 and D2xd2yd2zd2 with respect to 
O1x1y1z1. Because the shafts are spinning in 
opposite directions here is substituted: 
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The symbols c and s are substitutions of cosine 
and sine functions. 

After substitutions and simplifications is 
achieved: 
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Consequently the linear velocit ies of p.D1 and 
p.D2 are obtained in function of GC: 
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Acquisit ion of expression for 
→

2DV  is 
analogical. 

Accordingly to [4, 5] the full angular velocity 
of VF ω is: 
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But if the simplified form of rotation matrix R 
Eq. (9) is adopted, the expression for the angular 
velocity ω (according to [4]) is allowable to be 
decreased to the following simplified form: 
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The full angular velocit ies of unbalanced 
shafts, projected on their principle axes of inert ia 
are Eqs. (15). 
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21, dd ωω rr
 - Relative angular velocit ies of DS 

with respect to VF. 
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Finally after substitutions for the full kinetic 
energy of the system is written Eq. (17). 
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4.2. Potential energy of the system П 

The potential energy of the system is formed 
from deformation of the flexible elements and from 
the weight of DS and its relative vert ical 
displacement about p.O21 and p.O22. 

211 DD Π+Π+Π=Π  (18) 

1Π - Potential energy from deformation of all 
flexible elements. In this model every flexible 
element (leaf springs and flexible coupling) is 

substituted from set of three mutually perpendicular 
linear springs and viscous dampers, angular springs 
and dampers are neglected.  

1Π  is absolutely equal with the full potential 
energy obtained in [1] and the derivation won’t be 
repeated here. 

21, DD ΠΠ - Potential energy from unbalanced 
shafts. Here g is earth acceleration, rd1x, rd2x are 
projections of vectors 21, dd rr

rr
 on the axes O21x and 
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O22x. Finally for the potential energy of the system 
is obtained: 
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Here i is a connect ion point  number, 

sp
i

sp
i

sp
i wvu ,,  are project ions of the deformat ion 

vector i
→
∆  in CS Oxspyspzsp which is rotated on β 

about  Oz axis, 555 ,, wvu  are deformat ions of 
flexible coupling in CS Oxyz. 

The st iffness and damping coefficients of the 
leaf springs are: 

xxxxx kkkkk ==== 4321    xxxxx bbbbb ==== 4321  
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The coefficients of the flexible coupling are: 

555555 ,,;,, zyxzyx bbbkkk  

 
4.3. Dissipative energy of the system Ф 

According to [4] the velocit ies of the 
connect ion points can be driven from deformat ion 
after different iat ion about  t ime. So for the full 
dissipat ive energy of the system can be written: 
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4.4. Excitation Q  

External excitat ion is available only by GC ϕd. 
This is the torque T provided from the DC elect rical 
motor with approximately linear torque–speed 
characterist ic.  

d
sT

sTT
.
ϕ⋅

ω
⋅

−⋅=  (23) 

Ts is stall torque, ω is required working angular 
velocity. 

After subst itut ing Eqs. (17), (21), (22) and (23) 
in (1), the system different ial Eqs. (24) that 
describes this dynamical model is obtained. 

Because of quant itat ive reasons here in Eqs. 
(24) are shown equat ions only for GC x, y, z and φd. 

All symbolical operat ions are performed in 
MAT HEMATICA, after that  the dynamical model 
is t ransferred to MAT LAB and than numerical 
solut ion is obtained. 
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5. Physical parameters of the separator 

The mass and geometrical parameters are 
obtained after modeling in SolidWorks. 

M = 52.37 kg Md = 7.37 kg 
Jx1 = 2.88 kg·m2 Jxd ≈ 0.07 kg·m2 
Jy1 = 1.63 kg·m2 Jyd ≈ 0.07 kg·m2 
Jz1 = 2.81 kg·m2 Jzd ≈ 0.015 kg·m2 
yd = 0 ÷ 19 mm x1 = 0 mm 
y1 = 235 mm z1 = 290 mm 
bx = 273.5 N·s/m kx = 882143.2 N/m 
by = 26.5 N·s/m ky = 4801.0 N/m 
bz = 77.0 N·s/m kz = 18946.3 N/m 
bx5 = by5 = 126.4 N·s/m kx5 = ky5 = 9996.7 N/m 
bz5 = 87.4 N·s/m kz5 = 54699.9 N/m 
x5 = – rc·cosβ , mm y5 = rc·sinβ , mm 
z5 = – 320 mm rc = 50 mm           β = 0 ÷ 90° 
 
6. Results 

The results from numerical solut ion of system 
Eq. (24) are presented in graphical form. Because of 
the considerable number of graphics provided from 
this model here are presented only graphics for 
displacement (linear and angular) of VF in t ime 
domain (Figure 4). After implementat ion of Fast 
Fourier T ransformat ion (FFT) the single sided 
amplitude spectrum is obtained (Figure 5).  

The results (Figures 4 and 5) are achieved 
under the following init ial condit ions: 
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7. Conclusions 

Three mass and seven degrees of freedom 
nonlinear dynamical model with account of 
gyroscopic effects resultant  from unbalanced shafts 
spinning is created. 

The equat ions of mot ion describing the 
dynamical model are solved numerically in the 
programming environment of MAT LAB. The 
results are represented graphically in t ime and 
frequency domain. 
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Figure 4. Forced vibrations in time domain 

 
These results are in high degree similar with 

the results obtained in [1]. On that  basis can be  
confirmed the conclusion that for the presented 
construct ion of VS the relat ions between GC are 
negligibly weak, the forced oscillat ions trajectory of 
sift ing surface is steady and rect ilinear. 
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Figure 5. Forced vibrations in frequency domain 
(Single sided amplitude spectrum) 
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