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Abstract. The present article is dedicated to the creatiba mathematical model for solving the problem wirgying
of a freely suspended load, the pivot point of Wwhimoves along a known, spatial, time dependent agitipn
dependent trajectory. The motion of the pendulurddscribed as rotations about two mutually perpardr axes.
Thus the Newton — Euler dynamic formulation isim¢itl and the equilibrium of a spherical pendulurdeminfluence
of a set of gravity and inertia forces and momdsitsonsidered. This approach leads to a systemaftraightforward
ordinary differential equations which could be smlvnumerically using any available solver. The Holuis easy to
programmes and could be used for dynamic investigatf the scope of different types of equipment.
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1. Introduction aspects of the problem additional discussion and

The swinging of a freely suspended load occurgesearch, finding new approaches to the solution of
in many hoisting devices such as overhead cranetle general task are required.
jib-cranes, hydraulic automobile cranes, etc. In  The present article is devoted to the problem of
these cases the suspension point moves along a patieating a straightforward mathematical model of
in space which path is in general different forspatial oscillations for a freely suspended heavy
different kinds of equipment. This path could alsoload with a suspension point moving along a
be assumed as known in advance as it is assured pyedefined path in space. Such a model will help
the driving system of the equipment, andsoling severalbasic tasks:
combination of different working motions along® Evaluating the amplitude of the oscillating load
certain degrees of freedom. Applying acceleration for different working condition and different
to the suspension point causes spatial swinging of types of equipment;
the payload. Such motion produces additional Evaluating the influence of additional inertia
inertia forces upon the construction at the pivot forces on the stability and structural integrity of
point (which could be quite substantial with big the construction in many cases of deployment;
payloads and fast accelerations) and leads sto Serving as basic research for designing a suitable
increasing the working cycle of the installatioredu  trajectory function (control law) for efficient
to the time elapsed in the process of stopping the damping of the load movement, especially during
oscillations. the braking time and for stopping the motion.

The problem, as a question of present interest

has been investigated by many authors fromp Mathematical model — general
different points of view. Some publications (Jerman  ~gnsiderations
[1]) consider payload spatial motion for different The Newton — Euler approach is used for the
type of cranes. Work [2] deals with modelling andsolution of the problem as specified above. The
study of a spherical pendulum response to differengraphical representation of the mechanical model is
kinds of pivot point kinematics excitations, while shown in Figure 1. The spatial swinging of the
some papers [3, 4, 5, 6] are devoted to the cavftrol freely suspended payload can be decomposed into
mechanical system motion and the generation ofgcillations in two mutually perpendicular planes a
stabilizing control laws in order to decrease thespown in the figure. A basic local frame {1} is
payload swinging. [Mitrev et al, 2008] consider ¢onsigered, its origin coincident with the pivodan
similar problems and use the Lagrange equationg,e positive direction of axis;Zoriented upwards
approach to solve the task. (opposite the direction of the gravity force). Two
The completed literature survey shows thefyrther frames of reference are defined, {2} anyl {3
considerable interest of many investigators towardg, 5ccordance with the Denavit — Hartenberg

the spatially swinging load problem. It could ¢onvention [7]. The origins of all three frames of
however be pointed out that in view of the multiple jaferences are coincident: the axis, Zs
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perpendicular on the first plane of oscillationsilerh The notationse; anda; (i = 2,3) refer to the

the axis Zis perpendicular on the second plane; the,ngylar velocity and angular acceleration vectérs o
axis % is chosen normal to the plane ofahd Z.  gach Jink expressed in terms of its own frame.
Thus the deviation of the load in each plane isconsidering the possible motion of each link as
described by the independent variabsand8;  rotation about the Z axis of its own frame of

which also define the angles of rotation abopt Z reference system and using the propagation of

and Z axes, respectvely. In Figure 1 the angular velocity and acceleration between links it
oscillations in both planes and directions of Zsaxe can written:

are visualized by a massless cross part caled

conditionally “link2”. The suspended load can be 0; :[0 0 éi]T, 0; :[0 0 éi]T

also referred to as “link3” for the sake of brevity

Frame {2} is considered rigidly attached to link2 o, =[0 0 GZ]T: 0, (2
and frame {3} rigidly attached to link3.
(J:)z :[0 0 éz]T:éz

03 = Rg.())z + 93
w3 = Rg.éz +63+C€3 (3)
Ceg = Ro.op x5

where 6, and 8, are the magnitudes of angular
velocity and acceleration vectors along each degree
of freedom.

Frame {1} moves in respect to the same
grounded frame of reference {0} in such a way that
the respective axes of the both systems stay ehrall
The position of frame {1} (or the pivot point)
relative to frame {0} is given by a positional vect

Figure 1. Mechanical model PO the coordinates of which are expressed in frame

{0} (the same in {1} - P°=P!) and are time (or
Thus the rotational matrixR% describes the position) dependent, or:

orientation of system {2} in respect to system {1}, pLt [ t t ]T
=|x V4 )
while the rotational matrix Rg describes the ® P Yo 20

orientation of system {3} in respect to system {2} Pit) = [vp(t) Vp (1) Vp(y)]T (4)

accordingly: ..
W o B0 =[ap0 a0 ap(y)]
coH, -sinB, O _ _
rRL=| o 0 1 It is assumed that these functions are known,
2 continuous, and smooth. Such a function depends
| sinB, cosB, O on the type of the equipment used and could result
) _ . (1) from certain combined motions (for example
co®; -sind; O accelerated rotation of the jib-cane while
Rgz, =l 0 0 1 simultaneously elevating the jib, etc.). Knowing th
~sinB; —cod; O motion law of the suspension point allows

- computing the acceleration of the gravity centne fo
Further needed is the orientation of the thirdlink3:
system relative to system {1} which is given

by RS =RS[RZ. As the columns of the rotational .
| ectl t  Cvca=osx(03xPe)+ R P

matrices represent projections of orthogonal unit C3—®3 3~ FC3 :

vectors, for each i and j (i, j = 1...3) it can be

Ve = 03X Pz + G

©®)

. ) _ Here P is the gravity centre vector for link3
written: R} =( RiJ)_1 =(R/ )T expressed in its own frame of reference.
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3. Newton — Euler dynamic formulation involved by a matrix operator.P is the skew-

Next the apply Newton-Euler dynamic symmetric matrix associated to vectd®, i.e.,
formulation is applied to the problem. Figure 1

shows the forces acting at the mass centre of:Iink3ID xE= P.Efor any three-component vectar.

force ® causing the acceleration as well as weight 0 -Pey Po

G of the payload. The latter is best known in frame Prax= Boasz | P 0 X ng )
{0}, (respectively frame {1}) and could be simply C37 = FC3 = | MCx -FCaz (9)
described axG'=[0 0 -mg|" wheremis the -Peay  Res; 0

mass of ink3, ang - gravity acceleration. Considering the equilibrium of virtual link2,

Under the influence of all forces applied — there will be no additional inertia, gravity forces

gravity and inertia (additional forces such asyrques to be added. Expressing the equation (8) in
friction, environment resistance, forces caused byerms of frame (2) it can be simply written:

wind etc. could also be added here), Iink3 is in N N
equilibrium at any moment and the equation of R32.[(PC3.(—PC3)+ |].R§.62+
equilibrium of the torque can be written by

2 B o) 6o —
summing the torques about the origin of frame {3} *R3.[(Rea (“Rea) +1103 = (10)
and setting the sum equal to zero: = R%_(pcs x fR.Gl— @3 % (g X Pog) -
—m(Pc3xVcs) ~ .oz - w3 xlog+ ©) ~MPc3xCycs-1.Ce3)
+Pc3x P13-G1 =0 To numerically solve the problem the ordinary

. differential equations can be integrated together:
In the formula above —l.@3-w3%].03

represents Euler's expression for the moment acting Agz-éz +A33.63 =B
on the body which moves with angular velocay p22_§2 + A23.é3 =B,

nd angular leratiom,, | is the inerti nsor .
and angular acceleration, | is the inertia tenso Note that the above coefficients; have the

of the link written in a frame the origin of whidgh form of 3x 3 matrixes, whileB, represents ¥ 3 a
located at the centre of mass and axes parallel t80|umn vector. For the purpose of equations
thosguﬂsftrﬁﬁﬁ {3}(3) and (5) in (6) and also integration any numerical integration procedure is
considerin (2)git can be written: suited, such as the ODE45 solver of the MATLAB
9 ' package for example. Having in mind that the
M.Pes X[(R305 + 05) % Pas] + oscillations occur only along the Z axis of the
€3 [(Rg 2*93)%Fes] respective frame of reference, for every iteration

(11)

+1. (R0, +03) = 5y Only the lower left term of théy; matrices and the
—po.xRGL- N X Prog) — (7) third term of the B vectors can be considered,
T3t It o3 (03 % Fea) leading to a system of linear algebraic equations f
~MPe3*Cyez - 1.Ge3 8,and8;.

In the equation above all terms containing

accelerationsd; are grouped on the left side, while 4- Results and conclusion , _ _

all other terms are moved to the right hand side. | Th_e set_ of ordinary drfferentlal_qu_Jatlons s
the left hand side also the matrix operator of théwumerlcz?llly mt_egrated for the_repo_srtlonlng of the_
cross product can be used, and subsequently t spension point along a spatial trajectory shawn i

terms can regrouped. Thus the first second ordelh'gure i (curve 1; Curve r21 Sh.OWS the p:cojectior? of
ordinary differential equation is obtained: the path on XY plane). The time span for moving
the point between the initial and the endpointe s

[(E’cs-(‘ﬁcs)”']-Rg-éz* to 6 seconds. Combining oscillations of the load
~ ~ . about both degrees of freedom, computed according
+H[(Res.(-Re3) + 1103 = (8 o equation (11) allows determining the position of
= Peg X ?RGl - 3% (03 % Peg) - the mass centre along the path which is presemted i

Figure 2 (curve 3).
~MPc3xCyeg - 1.Ge3

where Px = P represents the cross product
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e with the intensification of the load transferring
W : processes (using higher acceleratons and
' N combining several working motions) a considerable
;—mve_li swinging of the suspended load can be expected,
D and considerable forces acting on the construction
T ' which are to be taken into account for the stradtur
integrity or fatigue analysis. The proposed appnoac
Yo could be used for dynamic investigation of the
J scope of different types of equipment.
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Figure 3. Force acting at the pivot point:
curvel — Z component;
curve2 — full force

The proposed approach leads to a set of two
non-linear ordinary differential equations allowing
the determination of the oscillations of a freely
suspended load. The derived equations are easiy
programmed and can be numerically integrated by
any available solver. The investigations show that
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