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Abstract. The paper describes the development of enhanced model-based and knowledge-based techniques, which are 
used for fault detection in air-processing, sensors controlled system, under real operation conditions. The developed 
modelling equations, knowledge based techniques and fuzzy logic decisions are applied for providing reliability 
enhancement and fault tolerance in industrial air-processing system, which represents an integral part of a general 
waste-processing system, designed for a zing galvanizing facility. 
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1. Introduction 

In general, there has always been a tendency 
for development of reliability requirements towards 
the industrial equipment, which in most cases could 
be described by its capabilities to provide “safety”, 
“ reliability” and “fault tolerance” during the 
operation stage(s) of the technologic system(s)  
[3, 4]. The need to provide such specific capabilities 
in the contemporary industrial equipment, have led 
to the development of some really sophisticated 
methods for its condition monitoring via automated 
diagnostic systems [4, 5, 8]. Some of the already 
developed diagnostic systems are designed to 
supervise mainly the life cycles of important 
industrial components by counting/calculating load 
cycles and temperature changes. Others, use 
sophisticated mathematical models, artificial 
intelligence techniques (Neural Networks, Fuzzy 
Logic, Expert systems, etc.) [5, 6, 8]. 

In general, two main methods were 
sufficiently developed and applied in the diagnosis 
algorithms and procedures, performed over the 
specific (i.e. the important) components of the 
industrial equipment. 

A). Model-based methods, which use 
complicated mathematical models for detecting 
faults and failures in the diagnosed industrial 
equipment; 

B). Knowledge-based methods, which rely 
on deep and/or shallow knowledge, obtained 
before and/or during the operation stages of the 
industrial equipment, to detect, evaluate and/or  
even to predict the faults and the failures. 

Of course, in some cases (when possible), 
particular combinations of both these methods are 
developed and applied  in the Fault Detection and 
Isolation (FDI) procedures [5]. 

Various kinds of steady-state models for 
different kinds of equipment could be built via 
processing the data, obtained under real operating 
conditions. In most cases, because of the existing 
measurement “noise”, the developed diagnostic 
procedures must also include some powerful 
estimation techniques during the creation of the 
state estimation algorithms. One of the most 
critical issues, that always exist, is how to monitor 
the sensors controlled systems, in order to avoid 
the resulting systematic measurement errors, when 
dealing with the selected state variables. If such 
issue(s) could be successfully resolved, then 
reliability enhancement and fault tolerance of the 
entire industrial system could be achieved [5, 7]. 

The present paper describes the development 
of model-based, knowledge-based and fuzzy logic 
techniques, which are used for fault detection in an 
industrial air-processing system. 

The so-developed modelling equations, 
knowledge based techniques and fuzzy logic 
decisions are applied for providing reliability 
enhancement  (under real operation conditions), in 
a sensors controlled air-processing system, which 
represents an integral part of a general waste-
processing system, designed for a zing galvanizing 
facility. 
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2. Sensors controlled system for waste air-
processing – structure, operation, 
capabilities and application 

The industrial system, designed for 
processing the waste air represents an essential part 
of technologic and logistic structures, specially 
developed for a Hot Dip Zinc Galvanizing Facility. 
The financing of this Project (including its 
Environmental Impact Assessment), is realized 
under the investment program of the US Overseas 
Private Investment Corporation (OPIC). The zing 
galvanizing facility’s logistic structures, the main 
and the supplementary equipment, as well as all 
essential technologic and logistics operations are 
presented in details in [1] and [2]. 

The general waste-processing system, 
comprise a waste liquids treatment equipment and 
an air processing equipment, designated for 
treatment of the air emissions generated by the 
galvanizing furnace operation [2]. 

A particulate emission (i.e., smoke) escapes 
from the surface of the molten zinc as the steel 
work to be galvanized is dipped.  This emission is 
caused by the volatilization of the flux and is 
primarily ammonium chloride, although zinc oxide 
is also present (please see EPA AP-40). 

Pollution control agencies in general have 
ruled that, these fumes must be collected using the 
best available technology.  This is done by using a 
tightly enclosed fume hood around the molten zinc 
bath (in fact, the galvanizers refer to this bath as 
the “kettle”) and a specific type of air filter known 
as a baghouse. This filter is equipped with a 
powerful suction fan and cloth bags, through which 
the air is filtered. The fume hood also makes a 
significant contribution to personnel safety by 
containing the splatter of hot zinc that sometimes 
results when work is dipped. 

The so-developed combination, made of a 
fume hood and a baghouse, will capture 99% of the 
particulate emission.  

The floor mounted hood structure (figure 
1) is designed as a truss structure, supported on 
columns on the working side of the kettle, which in 
turn supports sliding doors along the side of the 
kettle. The opposite side of the kettle is enclosed 
by a similar structure which also supports sliding 
doors, and the ends of the kettle are served with 
gate type doors which open away from the working 
side. The sliding doors are suspended on ball 
bearing rollers mounted in track, and the end doors 
are mounted in ball bushings for ease of operation. 

A twin-module baghouse, designed and built 

for processing of the waste air is shown on figure 2. 
The baghouse blowers are sized based upon 7 air 
changes per minute of the hood volume. (This flow 
rate is based on recommendations found in EPA 
Manual AP-40 & Industrial Ventilation published 
by The American Conference of Governmental 
Industrial Hygienists). The baghouse is sized 
according to the hood volume, and is made in 
modules with a capacity of 8,000 SCFM each. The 
air flow may be determined by multiplying the hood 
volume in cubic feet by seven. This will give the 
recommended number of air changes each minute. 

 

 
Figure 1. Floor mounted hood enclosure 

 

 
Figure 2. A twin-module baghouse of the zinc 

galvanizing facility 
 
The main structural modules of the air-

processing equipment are: 
• Baghouse - a twin module (two chamber unit);  
• Bags - 156 bags in each chamber with 5" 

diameter by 9'2" polyester fabric approximately 
2000 sq. ft.  cloth area each chamber; 

• Blower - 16,000 cfm - 25Hp 480/3/50 Fiberglass 
with weather cover and a Manometer - 0 - 8" wc; 

• Electrical - motor starters, each one possessing 
power of 25 Hp and 1 Hp respectively, and 
supplied with interlock, so that both motors can 
not be run at the same time 

• Ductwork - 18" diameter PVC ductwork is used. 
The control of the entire air-processing 
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system is effectuated by a sensors controlled 
system, composed by four sensors and micro-
controller of a STM32F103 model.  

The controller uses a PWM (i.e., Pulse 
Weight Modulation) to control the four sensors 
(incremental type encoders) of a KÜBLER model. 

The structure and the operation of the 
sensors controlled system will therefore be a 
subject to Fault Detection and Fault Isolation 
procedures (FDI procedures), developed in this 
paper. As result of the waste air-processing system 
operation, the solid waste from the baghouse 
remains collected in the bags (placed in the 
baghouse chambers) and must be disposed of. 

The so-collected quantities of particulates 
must be disposed of as a solid hazardous waste. 
Specific kinds of HAZMAT containers, designated 
for transportation & storage of solid and liquid 
hazardous waste are used for this purpose. 

 
3. Modelling of the State Variables 

In compliance with the developed structure of 
the sensors controlled air-processing system, some 
important characteristics, (referred hereto as 
diagnostic parameters), should be selected and 
applied during the condition monitoring of the 
diagnosed systems modules. However, for the 
modelling purposes, as well as in the sense of the 
terms, related to the control actions, those 
characteristics should be referred as state variables.  

A specific diagnostic analysis was 
performed over the characteristics of main systems 
modules. The aim of this analysis was a 
determination and a selection of the necessary state 
variables. The analytic procedures were based on a 
genetic type of algorithm. Specific genetic 
operators, developed as “selection”, 
“reproduction” and “crossing-over” were applied 
for determination of the representing sets of state 
variables/diagnostic parameters. The so-
determined state variables can further be applied 
for a condition monitoring of the systems modules.  

The selected state variables are included in a 
specific {SL} set (a list), and are defined as follows:  
• mass flow rate (of the processed waste air); 
• changes in the pressure in the different cross 

sections (mainly in the outlet zones); 
• temperature changes; 
• relative pressure loss; 
• quality of the already processed air.  

Some of these state variables can be directly 
measured by the sensors controlled system, others 
– can not be directly measured and must be 

calculated and/or modelled by introducing other 
specific sets of measurable values (for some 
important and typical process variables). The 
values, that can be measured are: pressures and 
temperatures at the inlet and at the outlet of each 
module (subjected to FD procedures), as well as 
the speed of rotation for the turbo fans, and (to 
some point) the quantities of the particles in the 
filtering bags. The correlation between the 
measured values and the state variables is 
established by reference to the specific 
characteristics of the diagnosed system 
components and the technologic/process relations. 
A particular methodology, based on a system 
similitude theory and genetic operators was 
developed and applied for that purpose. Some 
eventual deviations (of a non-linear type) in the 
values can be modelled thru that methodology, 
others – not, which means, that, the representing 
(i.e., the describing) modelling equations should 
allow changes only in the selected operation 
points, (referred to the nominal states). 

Therefore, the modelling equations for each 
state variable Xi  are expressed as functions of n 
measured values (measured by the sensors system), 
which compose the corresponding measurement 
vector Yj. The developed modelling equations are 
of the following type: 

n
Nn

i

N

i

N

i
i

dY
Y

X

dY
Y

X
dY

Y

X
dX










∂
∂+

++








∂
∂+









∂
∂= K2

2
1

1
 (1) 

where: N represents the nominal state; 
 dYj = Yj – YjN , and dXi = Xi - XiN . 

Due to reasons for generalization, the state 
modeling equation should be developed in a non-
dimensional format, by referring the variations “∆” 
only to the nominal state itself, as well as by 
allowing only a finite number of deviations. The 
equation (1) can therefore be transformed as 
follows: 
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modeling coefficients, 
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ki ,1=  and nj ,1= ), can be determined by the 
specific technologic/process relations (available for 
each system component).  

The modelling equations could therefore be 
expressed as a linear system of the following kind: 

∑
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1
 (3) 

The so-developed system connects the “k” 
state variables of the system with the “n” 
(normalized) measured values. The modelling 
techniques are developed via the application of an 
observer-based approach regarding the sensors 
configurations (i.e., all modules are observable), 
which means, that, the equations (2) and (3) are 
solvable. The linear system (3) can also be 
expressed in a vector-matrix form, of the following 
kind: 

( ) [ ]( ) ( )11 ××× ⋅= nnkk YSMX  (4) 

where, the vectors X (k x 1) and Y(nx1) , correspond to 
the variations ∆X and ∆Y, and the system matrix 
[SM] (kxn) contains all  modelling information 
(related to the different  states), which is used for 
condition monitoring of the system modules. 

The relation (4) can also be developed as a 
measuring-based equation: 

[ ] [ ]( ) [ ]MXMMMY kn ⋅= ×  (5) 

where, Y[M] is the measurement vector, [MM](nxk) 
is an (n x k) dimensional measurement matrix, 
which result from the system matrix [SM](kxn). A 
relatively simple kind of algorithm was developed 
and applied for explicit calculation of [MM] 
matrix, once the [SM] is built. 

 
4. Knowledge-based methods for sensors 

fault detection 
The components of the measurement vector 

Yj, represent in fact the measured quantities, which 
express the states of the diagnosed system 
modules. The selected state variables are chosen 
from the {SL} set.   

A specific algorithmic criteria, related to the 
states variables values was developed and applied 
for systems condition monitoring. The created 
algorithms are created on the principle, that, all 
states are normalized, which means, that for all 
“fault/failure – free” cases they must be equal to 
zero, and respectively - an eventual positive 
values indicate the existence of one or more 

sensors faults. The physical sense of this algorithm 
can therefore be applied as sets of specific rules, 
which respectively can be developed into two main 
categories: 
• Category 1: “Sensor-Based Rules - SENBAR” 
• Category 2: “State-based rules -STATBAR”. 

The rules can thus provide indications for an 
already generated sensors fault/failure, or can 
exclude the existence of fault(s) in a particular (or 
in all) sensor(s). The “STATBAR” algorithms are 
trained to search for possible consequences in 
some specific state Si, generated by the 
performances of all sensors [Y i], which are linked 
with the state Si via relation (4). The “SENBAR” 
algorithms work in the opposite way, i.e., they are 
trained to search for consequences in all groups of 
states [Sj], if there is a fault occurrence in some 
specific sensor Y i. 

In fact, during the processing of both 
algorithms two particular types of sets, containing 
the faulty sensors can be defined: 
• [FS]ST – set of faulty sensors, defined by  

STATBAR algorithm; 
• [FS]SE – set of faulty sensors, defined by 

SENBAR algorithm. 
The union of both these particular sets, 

defines a new (global) set [FS]G , which contains 
all faulty sensors, existing simultaneously in 
[FS]ST and [FS]SE, and at the same time 
influencing the states, in case, there is a fault 
occurrence(s) in the sensors measuring system. 
The global set is determined as follows: 

[ ] [ ] [ ]{ } [ ][ ]{ } δ>= cj
STFSSESTG fYFSFSFS /UI  (6)

where δ is the limited value for application of the 
sensors sets (i.e., the restricted number of sensors 
involved); 

fc is the certitude factor for existence of 
faulty sensors in the STATBAR. The values of fc 
are selected by experimentally and in this case are 
determined to be between 0.7 and 0.8. Thus, in the 
worst case scenario, the number of possible faulty 
sensors could be reduced to 70% (of the total 
number of sensors). The remaining (selected) 
sensors, are analyzed by the model-based 
techniques, which can provide quantitative results. 

An enhancement of the knowledge-based 
techniques can be achieved thru correlation 
methods, i.e., via creating combinations between 
vector-matrix relation (4) and measuring based 
relation (5). The resulting expression is: 

[ ] [ ] [ ] ( )INSTFS YSMMMY ⋅⋅=  (7) 

where Y(IN) is the simulated input vector, which is 
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determined by the expression. 
( ) [ ]TINY 004.00 KK −=  (8) 

The so-defined input vector provides options 
for fault simulation (with a value of – 4%), in a 
particular sensor “J” (with 0 < J ≤ n). Such techniques 
can be developed for all “n” sensors, and the 
respective patterns of the kind (Y [FS]ST)J  are stored in 
the knowledge bases of the SENBAR and STATBAR 
algorithms. If the sensors faults in the real 
measurement vector YJ, exist simultaneously also in 
at least one of the already stored patterns (Y [FS]ST)J  - 
then the sensors faults are generated in the same 
sensor. All similar sensors can be determined by the 
global set [FS]G - (eq. 6). The so-defined sensors are 
compared with those in the real measurement vector 
YJ, by using equation (7) and a particular criteria for 
resemblance, expressed by a specific coefficient of 

resemblance J
CR , of  the following kind: 

( ) ( )[ ]
∑
=

−−
=

n

i

YYKJ
C

IFSSTIJFSSTe
n

R
1

,1
 (9) 

where K represents an empirical constant, which for 
the actual analysis is chosen to be equal to 8. The 

current values of J
CR  belong to the interval [0, 1]. 

The maximal value of ( )max
J
C

J
C RR = , determines 

the correct location of the fault, generated in the “J-
sensor”. If there are more than one sensor fault – 
then, the principle of the superposition could be 
applied for their determination. 

The results, obtained during an experiment, 
performed over the diagnosed systems modules are 
presented on figure 1, and in Table.1. Three 
sensors faults were simulated during the 
experiments, which were carried out over the real 
measurement data (obtained under real operating 
conditions). The sensors faults were set as follows: 
• For sensor No 2 (rotational speed of the blowers 

shaft): average value of the fault is  -2.5 %; 
•  For sensor No 5 (temperature in the outlet zone): 

average value of the sensors fault is -3.5 %; 
• For sensor No 7 (dynamic pressure in the outlet 

ductwork): average value of the fault is -1.5 %; 
The sensors combinations are calculated in 

eq. (6). The obtained global sets are analyzed thru 
eq. (9) and submitted to a following model-based 
procedure. Some samples of obtained results for 
eight combinations of sensors faults, (including the 

calculated values for J
CR ), are shown on figure 3. 

Extracts of the numerical results, obtained during 
the performed experimental analysis and the 
numeric calculations are placed in Table 1. 

 
Figure 3. Experimental results for a sensors fault 

detection 
 

Table 1. Extracts of numerical values, calculated from 
some combinations of sensors faults and the 

resemblance coefficients 
Sensors 

Combinations 
Sensors faults R

J

C  
[2,4,7] -2.234 -0.347 -1.258 0.422 
[3,4,7] -0.544 -0.899 -2.188 0.419 
[2,4,6] -2.897 -0.344 +0.249 0.448 
[2,5,6] +0.438 -2.883 -1.911 0.547 
[1,5,7] +0.998 -2.882 -1.221 0.735 
[2,5,7] -0.343 -2.883 -1.222 0.617 
[3,5,7] +0.866 -2.939 -1.821 0.501 
[4,5,7] -0.357 -2.799 -1.355 0.411 

 

The calculated resemblance coefficients J
CR  

reflect the different sensors combination without the 
existence of ambiguity, since the values of the 
sensors faults are confined to the accuracy of the 
developed models. The values of the sensors faults 
belong to their corresponding sensors configuration 
(presented on the left column of Table 1). 

 
5. Development and application of Fuzzy 

Logic (FL) modules for interpretation of 
the diagnostic data-bases 

Almost every sensors system generates some 
disturbances (i.e., measurement faults) during the 
done measurement procedures. In general, the 
nature of these measurement faults is influenced by 
the applied methods and equipment, but mostly – 
by the process development, (the non-predictable 
and stochastic changes in the process behaviour 
have strong effect on these faults). The so-
generated measurements are transferred in the 
system states and inevitably provoke some 
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uncertainties in the diagnostic data bases. Another 
important aspect of the generated measurement 
faults is their disturbance effect on the system 
matrix [SM], resulting in eventual defects in the 
developed modelling techniques. 

These considerations are in the core of the 
reason for development and application of Fuzzy 
Logic (GL) modules for interpretation of the 
relations between the state variables and the 
measured quantities of the process variables. The 
MATLAB toolbox Fuzzy Logic was applied for 
the purpose. 

The system state Xi ( ni ,1= ) is a function of the 
measured quantities (i.e., the components of the 

measurement vector) – Yj ( mj ,1= ). In the aspect of 
FL the following relation could therefore be developed: 

( ) ( ) ( )[ ],,,, 21 iYmiYiYi XMXMXMFX K=  (10) 
where MYJ(X i) are the membership functions, 
which express the degree of uncertainty of the 
relation X i(YJ). The example, provided on figure 4, 
shows, that for a system state X4 (of the diagnosed 
component), the influence function is selected as a 
triangular function, where the shape of the lines are 
determined by the elements of the system matrix 
[SM] . 
 

 
Figure 4. Fuzzy Logic functions, applied for 
interpretation of particular system state X4 

 
The analysis, performed over the obtained 

function shapes show, that, large values of the 
elements of [SM], have strong effect over the 
relation X i(YJ), while small values of the elements 
of [SM], have only a little influence  over the 
relation X i(YJ), (expressed by a very narrow strip 
on the axe X4 (figure 2). For this particular 
example the measurement quantities Y1, Y2, Y4, Y5 
and Y6, influence the system state X4, - please see 
again relation (10). Similar sets and relations can 
be composed for all considered system states. 
Since, the diagnosis procedures generate fault-free 

system states, a measurement values with faults 
will have very high influence effect over the 
composed sets. Such a particularity can be used for 
a criteria to separate (i.e. to isolate) such values 
from the others (i.e. from the “healthy” ones) 
providing options for high fault tolerance of the 
sensors measurement system. 

 
6. Conclusions 
6.1. The structure and the operation procedures for 
a sensors controlled system, designed for waste air-
processing was developed. 
6.2. Techniques for modelling of the State 
Variables, were developed and applied in FD 
procedures. 
6.3. Knowledge-based methods for sensors fault 
detection were also developed and applied in 
combination with FL techniques for FD of the 
diagnosed modules. 
6.4. The developed modeling and knowledge based 
techniques were applied in an industrial waste air-
processing system, under real operation conditions, 
thus providing fault tolerance and reliability 
enhancement of the entire technologic system. 
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