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Abstract. A servo performance limit of the numerical axes from the numerically controlled machine tool structure is 
the first natural frequency of their mechanical structure, because this limits the maximum amplification on the system 
control loops. For this reason, it is very important the appraisal for the critical speed of the ball screws from the 
numerical axes structure made by a more exactly calculation procedure. 

Generally, the ball screw manufacturers offer in the instruction manuals, charts for the ball screw critical speed 
appraisal dependent on dimensions and type of their pillows. This method for the appraisal of the critical speed value is 
not a very accurate one, so that, while the feed velocities achieved by the numerical axes of the numerically controlled 
machine tools are increased, a more exactly calculation method is necessary for the optimization of the amplification 
parameters for the control loops. 

This paper aims to elaborate a calculation method for the critical speed of the ball screws from the numerical 
axes structure, as critical bending speed, which corresponds to one of the natural resonant frequencies, the first natural 
resonant frequency of the assembly consisted of the ball screw and its pillows being considered as significant frequency 
in this case. 
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1. Introduction 

The ball screw of the numerical axes 
structure can be easy modelled from standpoint of 
the dynamic behaviour, as a rotor [3]. According to 
[1], the critical speed of a rotor is the typical speed 
that sparks off the resonance of an excited system. 
Also, it is defined in [1], the critical speed – the 
speed when the bending of a rotor is maximum, so 
that the relative deflection is more important than 
the displacement of the support journals and the 
rigid-rotor-mode critical speed – the speed when 
the displacement of the support journals is 
maximum, so that this displacement is more 
important than the bending of the rotor. 

For the achievement of the main objective 
proposed by this paper, respectively for the develop-
ment of a calculation method for the critical speeds 
of the ball screws, the ball screw – support bearing 
system will be dynamically modelled in the variant 
of the flexible rotor fixed on stiff supports, because 
the ball screw deformation is obviously much more 
than the journal displacement and this deformation 
causes dramatic effects upon the dynamic behaviour 
of the numerical axis in assembly. 

The determinations of the all inherit 
frequencies and the relative vibration modes are 
necessary as the free vibrations of a system to be 
solved. For many times in practice, it is necessary 
only some inherit frequencies to be known, 
sometimes only one [2]. This case is analyzed in 
this paper, where the first natural frequency of the 
mechanical structure limits the amplification on the 
control loops of a numerical axis servo-system.  It 
will be considered that this first natural frequency 
corresponds to the critical speed of the ball screw. 
 
2. Mathematical model 

The classic method for the solution of a 
vibration problem consists of the writing of one or 
more motion equations, by applying of the Newton 
second law [4]. This method will be utilized, using 
the modeling of the ball screw- support bearing 
system like that shown in the figure 1, a.  

In order that the motion equation to be found, 
it will be started from the known relation [2]: 
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EI =
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where: E – modulus of longitudinal elasticity;  
I – minimum moment of inertia of threaded shaft; 
M – bending moment from current section. 

This equation gives the curvature of a beam 
(that models the ball screw) dependent on the 
bending moment in a certain section of the beam, by 
assumption that the material is a homogeneous, 
isotropic one and it is submited to the Hooke law and 
by considering that the beam is a straight one and 
with a constant cross section on the whole length. 
The equation is valid only for small deformations and 
for beams having their length of big dimensions 
related to their cross dimensions (this being the case 
of the ball screw from the numerical axes structure), 
when the effects of the displacement due to the 
shearing are negligible. The effects of the section 
sliding and rotation are negligible. 
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Figure 1. Dynamic model of the ball screw 

 
For the case of the ball screw cross vibration, 

the motion equation is deduced by consideration of 
the forces that act on the small infinite element from 
its length (figure 1, b), limited by two plans A-A 
and B-B, that are normally on the longitudinal 
threaded shaft axis. In each section, the total vertical 
shearing force is consisted of two parts: the force 
generated by the static load including the threaded 
shaft weight and the force generated by vibration  
[5, 6]. Part of the shearing force generated by the 
static load balances exactly this load and therefore 
when the motion equation is deduced, these forces 
can be neglected, if the all displacements will be 
taken from the balance position of the ball screw 
under the load. Sum of the rest vertical forces that 
act on the considered element must be equal with 
the product of the element mass by the acceleration 
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If the moments are calculated related to the 
point O of the element from figure 1, then:  
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The other terms contain higher-order 
derivatives and can be neglected. By replacing this 
equation (3), it is obtained: 
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where: A  is sectional area of threaded shaft, γ  - 
specific gravity, and g  - acceleration of gravity. 
By substituting in the equation (1) results: 
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If EI is constant, The solution of this 
equation has the form: 

( ) ( )[ ]θ+ω= txXy ncos  (7) 
where X is a x function only. By writing: 

EIg

A
k nγω=

2
4  (8) 

and dividing (7) by ( )[ ]θ+ω tncos , it is obtained: 

Xk
dx

Xd 4
4

2
=  (9) 

where X is a function having the fourth derivative 
equal with a constant multiplied by function itself. 

The equation solution is given by a sum of 
functions (linearly independent ones) that checks 
the equation:  

kxAkxAkxAkxAX chshcossin 4321 +++=  (10) 
The solution can be also expressed by terms 

consisted of exponential functions, but the 
trigonometric and hyperbolic functions are usually 
more easy to be used. 

For the ball screws having different bearing 
conditions, the constants1A , 2A , 3A  and 4A  are 
settled from the limit conditions. For the solution 
finding, it is suitable as the equation to be written in 
the below form, where two from constants are null, 
for each of the usual limit conditions:  

( ) ( )
( ) ( )kxkxDkxkxC

kxkxBkxkxAX

shsinshsin

chcoschcos

−+++
+−++=

 (11) 

In the application of the limit conditions the 
following relations are used, where are firstly 
shown the successive derivative related to x: 
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- deflection is proportional to X and is null 
on a stiff support; 

- rotation is proportional to X ′  and is null 
at a built-in end; 

- bending moment is proportional to X ′′  
and is null at a free or jointed end; 

- shearing force is proportional to X ′′  and is 
null at a free end. 

For the usual limit conditions, two of 
constants are null, so being two equations with two 
constants. These can be combined and it is 
obtained an equation where only the frequency is 
unknown. By using the frequency, one of constants 
can be expressed dependent on the other one. 
 
3. Determination of the critical speed 
dependent on the features of the ball screw 
bearings 

In the numerical axes configuration, the 
combinations of the bearing types where the ball 
screw is supported are shown in figure 2.  

By using the mathematical model developed 
in the previous section, the inherit frequencies of 
the ball screw will be firstly determined for the 
configuration a) from figure 2 of the numerical 
axis. 

The limit conditions are:  
- at 0=x , 0=X  and 0=′X  (12) 

- at blx = , 0=′′X  and 0=′′′X  (13) 
From these conditions successively results:  

0=A ; 0=C ; 
( ) ( )bbbb klklDklklB shsinchcos0 −−+−−=
( ) ( )bbbb klklDklklB chcosshsin0 −−+−=  

(14) 

By solving the two equations (143) related 
to BD and by equalling the results, the following 
equation is obtained:    
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The equation (15) is reduced at the form: 
1chcos −=⋅ bb klkl  (16) 

where: k  has the significance of the expression from 
the equation (8), and bl  the mounting length, (fig. 2). 

Only the first solution of the equation (16) is 
interesting for this paper objective, this being 
typical to the first vibration mode of the system. 
For this solution finding, proper mathematical 
software can be used, for example Matlab, the 
following solution being obtained [7, 8] 

8711961.87510406lk b =⋅  (17) 

The value of expression blk ⋅ will be a 

typical one for each from those 4 situations 
described in fig.2. This means that the relation (17) 
so can be written: 

λ=⋅ blk , or 
bl

k
λ=  (18) 

where λ  represents the value of the product blk ⋅ . 
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Figure 2. Combinations of the bearing types for the ball 

screws used in the numerical axes 
 
By using the limit conditions suitable to the 

bearing mode of the ball screw for the situations 
b), c) and d) from figure 2, the values of λ , from 
table 1, are obtained – by a procedure like that 
presented for the case a). 

 
Table 1. Values of the coefficientλ  for the situations 

from figure 2. 
Case (figure 2) λ  
a): Fixed – Free 1.87510406871196 

b): Supported – Supported  3.14159265358979 
c): Fixed – Supported 3.92660231204791 

d) Fixed – Fixed 4.73004074486270 
 
By replacing the k expression from the 

relation (18) in equation (8), it is obtained: 
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which represents the general expression of the critical 
velocity corresponding to the first vibration mode of 
the ball screw from a numerical axis  structure. In 
practice, the value of the critical speed is more useful: 

A

EIg

l
n

b
n γ⋅π

λ⋅=
2

230
 (20) 

 
4. Calculations and simulations 

This is interesting for the analysis of the 
dependence between the critical speed value of the 
ball screws and their mounting length, respectively 
the bearing mode, the chart of dependence 
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Figure 3. Critical speed dependence on bl  and λ  

(threaded shaft diameter: 30.1 mm) 
 
In the figures 3 and 4, are presented these 

dependences for the ball screws having the root 
diameter of 30.1 mm (figure 3), respectively 
44.1 mm (figure 4) with mounting distances 
between 500 and 4000 mm. 

 
5. Conclusions 

This paper aimed to develop a more precise 
calculation methodology for the critical speed of 
the ball screws from the numerical axes structure, 
as necessary parameter in the optimization of its 
servo-system. For this, starting from the known 
dynamic model that of a flexible rotor fixed on 
stiff supports, a calculation relation for the critical 
speed was deduced and by means of this, the 
dependences between the critical speed value and 
the mounting length, respectively the bearing type 
which supports the ball screw in the numerical axis 
structure, were plotted. 
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Figure 4. Critical speed dependence on bl  and λ  

(threaded shaft diameter: 44.1 mm) 
 
The calculation relation is useful in the 

preliminary design stage for the dimensioning of 
the numerical axis mechanical structure. Surely, a 
more exact value for the critical speed of the ball 
screw, which depends on the real behaviour of the 
numerical axis whole mechanical structure 
assembly, can be obtained by experimental 
measurements on the physical model of the 
numerically controlled machine tool. 
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