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Abstract. A research with 3D computer models on some aspects of the lifting dynamics of triple telescopic lifting gears 
is presented. The influence of the lifting tackle mechanisms, moving masses, etc. is taken into account. Contacts 
between chains and tackle rolls are also accounted for and it introduces various complexities to the model. Precise 
setting of integrator parameters enables the simulations to realize various model beneficial options such as: lifting for a 
given start time, lifting and stopping, lifting load with and without impact as well as accounting for the contact forces. 
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1. Introduction 

The paper has to be written in English. Its 
contents should be structured in the following way 
(recommendation): problem description, application 
field, research stages, methods used, results, 
further research, conclusions, and references. 

Lifting dynamics of fork lift trucks is due to 
the structural peculiarities of the lifting gear which 
is primarily made up of hydraulic and mechanical 
systems. The hydraulic system includes one or 
more hydraulic drives. After the oil is accelerated, 
the drives act on the mechanical system by means 
of plungers so that the load is lifted up. 

In general, the mechanical system is a 
multiple lifting tackle connected to telescopically 
arranged metal frames (masts). The frames make 
possible the elevated handling of loads. 

Lifting dynamic response is evaluated 
correctly when the start time is well known. 
However, start time is quite difficult to be obtained 
since it is a complex function of numerous factors 
(valve actuating), time for accelerating the 
hydraulic system, time for accelerating the lifting 
tackles, etc. It is obvious that it is hard to compute 
theoretically this function. Therefore, the 
abovementioned task is handled by applying 
empirical relations [1, 2] such as 

Cstart vt λ=  (1) 
where λ ≈ 6 - 8 is coefficient that depends on 

the lifting gear parameters and design; vc is the 
velocity of the piston of the hydraulic drive. 

Driving force, respectively dynamic 
response of different lifting gear designs is 

investigated in 0 by the use of a single mass model 
where the starting time is defined from relation (1). 
These investigations, however, do not account for 
the elasticity of lifting tackles, moving masses and 
hydraulic system influence, etc. 

It is clear that detailed research is necessary 
on the lifting dynamics of fork lift trucks.  

Well-defined computer simulations that 
employ 3-D models are a key to the resolution of 
these problems and have been set as the objective 
to the present work. 

 
2. General considerations 

Lifting mechanisms with multiple lifting 
tackles, embedded in n-telescopic lifting gears, 
could be designed with one or two hydraulic 
drives. Gears with one drive (gears with low free 
lift) have the hydraulic drive carried by the 
immovable mast as shown in figure 1. Gears with 
two drives have one of their drives fixed and the 
other one lifts up along with the innermost mast, 
(figure 2). 

The common thing to these kinematic 
schemes is that number of movable masts is n-1. 
For mechanisms with one hydraulic drive, this 
number is the same for the lifting tackles that are 
connected in series to the respective masts. 

For mechanisms with two hydraulic drives, 
n-2 lifting tackles are connected in series and the 
last tackle is carried by the movable hydraulic 
drive 1 (figure 2). 

Velocities, respectively gear ratios of 
movable elements in both kinematic schemes are 
formulated with the following relations 
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lifting gear with one hydraulic drive 
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Similarly, for the payload velocity vQ  
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The gear ratio is 
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Figure 1. Lifting gear with one hydraulic drive 
1 – hydraulic drive, 2 – multiple lifting tackle, 

n0 – immovable (fixed) mast, n1..n-1 – movable masts 
 

 
lifting gear with two hydraulic drives 
first stroke 

2; 111
== iviv CQ  (5) 

second stroke 
1; 222

−== niviv CQ  (6) 

On condition that 1 2v vQ Q= , it follows that 

( )213 iin ==  (7) 
Clearly, lifting gears with two hydraulic 

drives have to be designed as triple telescopic 

so that the uniformity of hydraulic parameters 
during both strokes is conserved. 

Both mechanisms have the same hydraulic 
scheme but the difference is that movable drive, 
figure 2, needs to be supplied by longer hoses. It 
means that, in this case, acceleration time (start 
time) for the hydraulic system is larger than the 
time for accelerating the mechanism in the 
presence of one drive. Hydraulic start time could 
be calculated with relation [2]: 

 

 
Figure 2. Lifting gear with two hydraulic drives 

1 – hydraulic drive for working stroke; 
2 – hydraulic drive for the multiple lifting 
tackle, 
3 – multiple lifting tackle; 
h1, h2 – working strokes of the corresponding 
hydraulic drives 
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where designations are: 
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A, δ, r – cross-sectional area of the pass, wall 
thickness and inner radius; l – length, Efluid ≈ 1.8⋅103 
MPa – operating fluid modulus of elasticity, 
Ehose = 0.2⋅103 MPa - hose modulus of elasticity, 
γ – operating fluid volumetric weight, αfluid – 
coefficient of fluid consumption of the valve, 
Avalve – cross-sectional area of the pass of the valve 
 
3. Generating 3D computer models 

The CAD system SolidWorks is employed 
to design and assemble the geometry of two major 
3-D models of lifting gears – model with one 
hydraulic drive (model 1) and model with two 
hydraulic drives (model 2). Real triple telescopic 
lifting gears are modeled and during the design 
stage, it is strictly monitored that model parameters 
such as masses, dimensions, mass moments of 
inertia, etc. conform precisely to the real values.  

Models are in fact multibody systems of 
rigid bodies 0 that have 94 bodies and 90 degrees 
of freedom. Models dynamic response is simulated 
by MSC.Adams as one of the most popular 
packages suitable exactly for similar problems 0. 

Simulations are carried out under the 
following conditions: 
• assembly is made of steel parts; 
• flexible element of the lifting tackle is block 
chain; contacts between chain members and tackle 
rolls are accounted for; chains have the same 
stiffness; 
• gravity is considered; 
• contact between payload and actuator (fork) as 
well as fork elasticity is accounted for;  
• structural defects as well as friction between 
guiding rolls and masts are neglected; 
• payload centre of mass is located at 500 mm 
from the base of the fork-arm; 

Contacts between chains and tackle rolls as 
well as between payload and the fork arm is a key 
aspect of the simulations. It allows for life-like 
models but at the same time leads to non-linear 
effects and various complexities related to 
continuity violations that the solution is bound to 
account for. 

One of the complexities refers to the 
simulation stepsize. When chains are in motion, 
some of the chain members fall in and others fall 
out of contact with the tackle rolls which causes 
impacts 0. It is a pre-condition for stiff differential 
equations and high frequency responses of the 
system. 

Another complexity is related to the contact 
defined between the payload and the fork. Models 

enable simulating cases of payload lifting from the 
ground (the payload is 60 mm above the ground) 
and lifting from the air (the payload is located on 
the fork). In the cases of ground lifting, impacts 
inevitably occur in the instant of payload picking 
up by the fork. When the stepsize is too large, 
simulations fail to solve due to integration failures 
caused by excessive forces, stability issues and 
corrector failures. 

Following an iterative procedure, it is 
estimated that the appropriate stepsize is 1 ms. It 
allows for high enough speed of solution and at the 
same time not sacrificing the precision. It is nece-
ssary, however, to adjust the solver settings in de-
tails. The GSTIFF integrator is used as one of the 
most popular types of stiff multistep integrators. 
The small stepsize requires that the I3 or SI2 for-
mulation be selected [5, 6]. In order that relatively 
constant stepsize at high order be achieved, the 
following is set: max. integrator timestep = 2.10-4s, 
local integration tolerance = 10-2 , max. integrator 
order = 12. 

Model actuation is yet another complexity. 
Hevyside step function is applied to deal with it 
(figure 3). This function causes sharp changes in 
the kinematic parameters, but the SI2 formulation 
relaxes them and any further discontinuities. 

 

 
Figure 1. Hydraulic drive velocity,  

tstart = 0.84s, Vc=0.14m/s 
 
The SI2 formulation preserves the continuity 

of derivatives and makes unnecessary any 
additional decrease in step size. Moreover, a life-
like starting of the model is realized, since the 
steady-state velocity is reached after a certain 
period of starting time. The same is true for 
simulating a working cycle of starting, lifting and 
stopping the lifting gear. 

Gravity is a must for the model. Providing 
gravity for the model, however, leads to necessary 
inertia relaxation prior to model actuation, so that 
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static equilibrium is obtained and additional 
undesired impacts are avoided. 

A real-life penetration depth of 100 µm is 
set for the contact between tackle rolls and chain 
members. It makes the system aware of their 
presence and relaxes impacts during simulation. 
Furthermore, precise geometry is used for the 3D 
contacts by setting values of the scaling factor for 
the facet tolerance. It decreases errors in forces and 
accelerations in contacts. After the integrator and 
contact settings are adjusted, simulations are 
solved and results are measured. 

The 3D model of a triple telescopic lifting 
gear with one hydraulic drive (model 1) is shown 
in figure 4. 

 

 
Figure 2. 3-D model 1 

Qn, Gf, Gt, G2, G1, GC - weight of the payload, 
fork, truck, movable masts and the piston of the 

hydraulic drive 
 

4. Numerical experiment and analysis 
Computer simulations are performed with 

both models for the following input data: 
model 1 Qn = 10kN, Gf = 0.7kN,  Gt = 0.7kN, 

G2 = 0.9kN, G1 = 1.1kN, GC = 0.3 kN, chain n1 = 
30 N (chain has 93 members and step 20mm), 
chain n2 = 40N (95 members), chain stiffness k1≈ 
k2 = 11.62MN/m, c =500mm, c1 = 600mm, m = 
60mm;  

model 2 all parameters are the same as for 
model 1 but here the weight of hydraulic drive 1 is 
included as GC1 = 0.3kN. Fork stiffness 
(100×40mm) – kfork=4.55 MN.m/deg 

Hydraulic system parameters are: 

Ahose=Atube=0.785cm2; rhose=rtube=5mm; lhose=1m; 
l tube=2m; δhose/rhose≈0.6÷0.7; lcyl=1.4m; Acyl=31cm2;  
γ=9kN/m3; αfluidAvalve≈0.02cm2 (for αfluid=0.6÷0.7); 
for model 2, parameters are the same and lhose=4m. 

Simulations are performed for: lifting from 
the ground (case A – sharp lift, case B – smooth 
lift) and lifting from the air (no impact) with 
payload velocities vQ=0.3, 0.36, 0.42 and 0.48m/s. 
For the piston velocities it is obtained: for model 1 
from formula 
Error! Reference source not found. at i=3, vci = 
vQ / 3, and the start time is defined from 
Error! Reference source not found. for λ1=6 and 
λ2=8. These values are listed in Table 1. 

Similarly, model 2 parameters are defined 
for which velocities in the first and second strokes 
are equal vc1= vc2 = vQi /2. Start times are 
determined by: 

t
v

t
Qi

start ∆+λ⋅= 2,12,1 2  
(9) 

∆t≈0.3s, is the time for accelerating the fluid 
for the longer hydraulic system (drive 1); 

Start time of the second drive is determined 
by the same formula for ∆t=0.  

Table 1 lists data about the dynamic 
response of model 1. 

 
Table 1 – Dynamic response of model 1 when the 

payload is lifted from the ground 
Force [kN] /  

Dynamic coefficients 
tstart [s] 
/case 

vC 
[m/s] 

drive chain n1 chain n2 
0.6 
A 

66.27 
1.81 

42.84 
1.81 

20.49 
1.8 

0.8 
B 

0.1 
66.07 
1.80 

42.76 
1.8 

20.46 
1.79 

0.72 
A 

72.30 
1.97 

47.08 
1.98 

22.62 
1.99 

0.96 
B 

0.12 
70.32 
1.92 

45.16 
1.91 

21.63 
1.91 

0.84 
A 

74.09 
2.02 

49.08 
2.07 

23.56 
2.07 

1.12 
B 

0.14 
68.35 
1.86 

46.01 
1.94 

22.11 
1.94 

0.96 
A 

76.68 
2.09 

50.14 
2.11 

24.05 
2.11 

1.28 
B 

0.16 
71.01 
1.94 

46.29 
1.95 

22.20 
1.95 

static 
force [kN] 

36.68 23.75 11.38 

 
Figures 5 to 7 shows chain responses for 

model 1. Figure 8 and 9 show chain responses for 
model 2. Figure 8 illustrates contact forces in chain 
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members P and R. Figure 10 gives chain force for 
model1, case A in the event of sharp stopping. 

 
Figure 3. Forces in chains n1 and n2, model 1,  

case B, vc=0.1m/s 
 

 
Figure 4. Forces in chain n1, model 1,  

cases A and B, vc=0.16m/s 
 

 
Figure 5. Forces in chain n1, model 1, lifting with and 

without impact, case B, vc=0.16m/s 
 

 
Figure 6. Forces in chains n1 and n2, model 2, lifting 

with impact, tstart=1.5s, vc=0.15m/s 
 

 
Figure 7. Forces in chain n1 and chain members P and 
R, model 2 lifting with impact, tstart=1.5s, Vc=0.15m/s 

 

 
Figure 8. Force in chain n1, model 1, case A, 

sharp stopping tstop=0.1s 
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The corresponding values of the 
fundamental natural frequencies of the models are 
ν1=3.2 Hz – for model 1 and ν1=4.78 Hz – for 
model 2. 

It is established from results analyses that 
the dynamic response of forces in chains and drive 
is identical regardless of lifting velocities. When 
the payload is lifted from the ground, model1, the 
dynamic response is 50% higher compared to the 
case when the payload is located on the fork and 
then lifted up. Model 1 has shown a dynamic 
response that is 17% higher than in model 2.  

Beating effects are observed in case B at 
higher lifting velocities but these are quickly 
dissipated. The reason for the effects is found in 
the external loading behaviour – Heavyside step 
function. 

Contact forces in chain members passing 
over the tackle rolls are to be noticed. As shown in 
figure 9, members P and R are loaded differently. 
Member P is in contact with the roll at the instant 
of max. force in the chain and therefore this 
member turns out to be the one with the highest 
loading. In another instant (t=2.39s), when member 
Q is in contact with the roll, it is clear that this 
other member is not loaded as high.  

Besides, when members pass over the roll, 
transversal vibrations occur with amplitude of 
0.3÷0.5mm. These cause high frequency vibrations 
in the range 20 ÷ 30 Hz. 

Analyzing figure 10 results has proved that 
lifting and sharp stopping have the same effect on 
the dynamic response of the system. 
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