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Abstract. The present paper describes the development of a modular neuro-fuzzy system, designated for enhanced and 
flexible fault diagnosis. Some specific neural algorithms for identification, recognition, evaluation and classification of 
the process parametric values are created and applied in the systems structure. The so-developed neuro-fuzzy system is 
then applied for fault diagnosis in an industrial zinc galvanizing facility, i.e., under real operational conditions. 
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1. Introduction  

In the recent years, considerable efforts of 
engineers and scientists were focused on a creation 
and a development of fuzzy and neuro-fuzzy 
system, designated for systems and/or process fault 
diagnosis, for adaptive control and supervision, as 
well as for modeling and prognosis of systems 
and/or process behavior [2, 8, 9, 10].  

In general, such types of so advanced and 
highly-performing systems find their application 
mainly in the area of evaluation and real-time 
control of the operational reliability in industrial 
complexes, for optimal and adaptive control of 
industrial processes and for on-line fault diagnosis 
with continuous and real-time evaluation of the 
systems states [2, 3, 4, 7]. Some sophisticated fuzzy 
modeling approaches were developed for the 
purpose and respectively applied during the creation 
of specific fuzzy models, thus providing an 
alternative but also extremely flexible modeling 
tools (compared to the traditional mathematical 
methods) [9, 10, 11]. The fuzzy modeling structures 
could be developed mainly by the application of 
two general types of methodologies. 

The first type of the fuzzy modeling 
methodologies is based on a creation of fuzzy 
relational matrixes (constructed respectively by 
fuzzy equations), that are supposed to relate the 
systems/process input and output variables in a 
fuzzy manner [5, 7, 8]. 

The information utilized for the creation of the 
fuzzy relational models (i.e., matrixes) could be 
either the measured numerical data (under real 
operation conditions), either the simulated data 
bases (obtained during experiments, carried on a 
specific laboratory equipment) [4, 6, 8]. The so-
created fuzzy models possess good generalization 
capacities and the relation equations are also quite 
adequate. The issue here is, that, the created 

relational models are designated mainly for systems 
with two (up to three) fuzzy inputs, i.e., they are not 
quite appropriate for multivariable systems [5, 7]. 
The so-developed matrixes (based on the available 
numerical data) are in general high-dimensional, 
complicated for computation and relatively complex 
[5, 8]. This is due mainly to the fact, that, the fuzzy 
models must adapt the numerical data bases, (which 
in fact “carry” the modeling knowledge and where 
the created fuzzy models must work), to some 
specific environment (designed formally via some 
general linguistic methods and represented by 
membership grade calculations (i.e., functions) [5, 
7, 8]. 

The second type of the fuzzy modeling 
methodologies is based on sets of fuzzy rules, that 
must relate the systems/process local input-output 
relations, (mostly in a linear and numerical way) [9, 
10, 11].  

The so-developed fuzzy models are in general 
quite simple, but at the same time also flexible and 
powerful enough to treat multivariable systems (at 
numerical level) [9, 10, 11]. The issue here, that, the 
identification algorithms are in general rather 
complicated and usually involve linguistic approxi-
mation techniques, non-linear programming and 
least-square optimization [10, 11]. Recently, Neural 
Networks learning and generalization capacities are 
also applied into the development of the fuzzy 
algorithms of identification [2, 3, 12]. 

The present paper describes the development of 
a modular neuro-fuzzy system, designated for fault 
diagnosis. Some specific algorithms for 
identification, recognition and classification of the 
process parametric values are created and applied in 
the systems structure. The so-developed neuro-
fuzzy system is then applied for an enhanced fault 
diagnosis (FD) in an industrial zinc galvanizing 
facility, i.e., under real operational conditions. 
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2. Development of the neuro-fuzzy system, 
applied for an enhanced FD – creation of 
the fuzzy models, the neural networks 
structures and identification learning 
algorithms 

2.1. General characteristics and relationships of 
the modular FD neuro-fuzzy system 
Depending from the type and the characteristics 

of the diagnosed process (and/or system), two 
general options should be considered during the 
creation of the FD systems structures, figure 1. 
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Figure 1. Options for development and application of 

Fuzzy and Neural modules 
a) Option A – systems internal logic is known; 

b) Option B – systems input-output behavior is known 
 

The systems structure, shown at figure 1a, 
represents the option, when the systems (process) 
logic is known, but there is no preliminary 
knowledge (i.e., examples) for its input-output 
behavior. For this particular case (referred as 
“Option A” ) it should be more convenient to 
develop a fuzzy reasoning model as a set of 
IF/THEN fuzzy rules. Such a model should be able 
to describe (and even to make a prognosis) of the 
systems behavior.  

For the systems structure, shown at figure 1b, 
(and referred as “Option B” ) it is more convenient 
to use the available input-output data to train a 
Neural Network (NN), and thus – to model the 

internal behavior of the system, i.e., since the 
systems internal logic is not, this particular case 
could be considered as a “Black box” FD system. 

These two (rather idealized) general structures 
possess their advantages, but they also have their 
specific issues [4, 5, 12]. So, our goal (for this 
particular case), is to create a “hybrid” system, 
developed as a combination of these general 
structures.  Such a system shall possess a neuro-
fuzzy structure and is expected to be more flexible 
and adaptable to the operation challenges. 

All logistic and technologic structures, as well 
as all essential technologic and logistics processes 
of the developed hot dip zinc galvanizing facility 
are presented in details in [1]. The general structure 
of the created “hybrid” Neuro-fuzzy System, 
designated for enhanced FD in a zinc galvanizing 
facility is presented at  
figure 2.  
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Figure 2. General structure of a Hybrid,  
Neuro-Fuzzy System (a “Grey Box”) 

 
The created structure is developed as a “Grey 

Box” and can perform an adequate modelling in a 
timely, reliable and cost-saving manner. The so-
developed neuro-fuzzy system is extremely 
adaptable and flexible and is therefore able to 
perform FD over the physically damaged systems 
components (i.e., components of logistics and/or 
technological structures), but also over the 
behaviour of the systems main technologic 
processes (i.e., the gas furnace heating processes, 
the tank heating processes, the waste liquids 
treatment and neutralization process, etc., etc.). 



RECENT, Vol. 12, nr. 2(32), July, 2011 

114 

The Neural Network (NN) module is trained to 
receive three data flows as an inputs 
(measurements, effectuated over the electrical, 
electronic and mechanical components), which are 
mapped (i.e., processed via the NN learning and 
recognition algorithms) into two flows of numerical 
values, which serve as inputs to the fuzzy reasoning 
model (i.e., the fuzzy algorithms). 

In fact, the output data, generated by the NN 
indicate (i.e., they are features) the degree of the 
failure/fault occurrence in the systems components 
and/or process variables (the generated outputs are 
numbers between 0 and 1), as well as the signal to 
noise ratio, reflecting the disturbances (the 
generated output are numbers between 0 and 20). 
The so-generated neural outputs (features) are fed as 
inputs to the fuzzy module, where the fuzzy relations 
map (process) the submitted information and provide 
decisions (results) about the actual state(s) of 
systems components and process variables (under 
consideration). Therefore, the purpose for the 
creation of a flexibility “Hybrid” Neuro-Fuzzy 
structure is based of the following facts: 
• The sets of numerical measurements provide in 

general too much details (some noise and 
disturbances are almost always presented in the 
numerical data flows), and could not be really 
effective for on-line processing of the FD 
features; 

• The NN filtering, smoothing and mapping of the 
processed numerical measurement flows into 
some kind of feature spaces (i.e., a degree of 
failure/fault occurrence, a signal-to-noise ratio, 
etc.) could be more reliable with a combination 
of a fuzzy controller (module). 
Thus, the so-created Neuro-fuzzy hybrid 

structure shall be flexible and able to provide an 
adaptive and enhanced FD in a real technologic 
facility for hot dip zinc galvanizing.  

In cases, when the input data flows contain  
many various and very complex kinds of species - 
then another option in the arrangement of the hybrid 
systems structure can be created. In such kinds of 
systems (named “fuzzy-neural systems”), the fuzzy 
processing of the data flows precedes the neural 
computing. Such hybrid fuzzy-neural system first 
provides a classification of all particular groups of 
input species, (performed by the fuzzy algorithms of 
the fuzzy module), and after that – a discrimination 
of the individual species in each classified group 
(performed by the NN algorithms). 

Two general types of NN structures are suitable 
for the development of the actual hybrid Neuro-

fuzzy system for FD – the Back-propagation NN 
(BPNN) and the Counter-propagation NN (CPNN).  

The BPNN is well-known structure, which 
possesses good generalization capacities, and is able 
to represent various fuzzy processes functionally or 
structurally. The issue here is that, the self-
construction of such a system is difficult. This is 
due to the fact, that, the gradient descent learning 
algorithm, (adopted by the BPNN) is a relatively 
slow process, which requires continuously repeated 
presence of the training samples (species), in order 
to achieve the necessary convergence of the 
learning. These requirements in fact lead to 
difficulties in the self-organization (i.e., the self-
construction) of the system from the available data 
(measured, generated and simulated). 

The CPNN is a two-layer network, which is 
able to perform vector-to-vector mapping process 
(similar to the hetero-associative memory NN). The 
advantage of the CPNN is that, it can be trained to 
perform associative mapping much faster, but with 
adequate self-organization of its structure 
(compared to the BPNN).   

The CPNN is very useful in the pattern 
mapping and association as well as in data 
compression and classification – some real merits, 
when FD must be performed over complicated 
systems and/or processes (as the ones, developed in 
a hot dip zinc galvanizing facility).  

 
2.2. Development of the Fuzzy reasoning model – 

structure and internal relations 
It could be assumed, that, the system to be 

modeled possesses r inputs and n outputs, denoted 
respectively by m1, m2, … , mr    and    y1, y2, …, yn. 
By considering the input output values at different 
time instants, as different variables, the systems 
dynamics could be expressed by the following 
relation, 

Yk = Fk(x1, x2, …, xq) (1) 

where q corresponds to q-th variable. 
The fuzzy reasoning model (that must be 

developed) should be able to describe the systems 
behavior adequately. Since the systems input-output 
relationships are not known, they could be modeled 
at linguistic level by sets of IF-THEN rules (please 
see also figure 2), of the following form,  
Rule 

(j):  
IF  X1 is A1,j and … and Xq is Aq,j THEN  
Y1  is  B1,j and … and Ym  is  Bm,j 

(2) 

where Xi and Yk are the fuzzy systems variables 
(corresponding to xi and yk respectively), and Aq,j 
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and Bm,j represent fuzzy sets (defined in 
corresponding clusters of measurement/modeled 
space). The Aq,j and Bm,j sets (for this fuzzy model) 
are characterized by membership functions (selected 
symmetrical for this particular case), which are 
respectively expressed via two functional 
parameters – E(x)

q,j and h(x)
q,j (respectively E(y)

m,j and 
h(y)

m,j), where E(x)
q,j , (E

(y)
m,j) is the center of the Aq,j 

set (Bm,j set), and h(x)
q,j (h

(y)
m,j) is the half width of 

the Aq,j and Bm,j sets. For this particular case the 
membership functions are selected to be 
symmetrical, because the diagnosed zing galvanizing 
processes possess symmetrical characteristic 
development – please see [1] for details on systems 
logistics and technologic processes.  

The Rule 
(j) might then be restructured under 

the following form, 

Rule 
(j): 

IF  [E(x)
j, H

(x)
j] THEN [E(y)

j, H
(y)

j] 
(3) 

where E(x)
j = {E(x)

1,j, …, E(x)
p,j} and E(y)

j = {E(y)
1,j, 

…, E(x)
r,j} are the two vectors of the sets centers 

(i.e., “central” vectors), which are associated with 
the two vectors of sets widths (i.e., “width” 
vectors), respectively, H(x)

j = {h(x)
1.,j, …, h(x)

p,j} and  
H(y)

j = {h(y)
1.,j, …, h(y)

p,j}.  
Each couple of the kind [E(x)

j, H
(x)

j] is able to 
create an input rule pattern. Each real (i.e., the 
current) numerical output of the system yR

k, is 
created as a response to the current numerical inputs 
xR = [xR

1, xR
2, …, xR

q], and can respectively be 
determined over the following two stages: 

• Stage A: Pattern Recognition (PR); 
• Stage B: Weights Evaluation (WE), i.e., criteria 

for adequateness.  
The Degree of recognition RD

(j), between the 
input  x  and the developed (via Rule 

(j)) pattern of 
the kind [E(x)

j, H
(x)

j], is determined by the following 
relation, 

RD
(j) = 1 – D(j)

R {x, [E(x)
j, H

(x)
j]}  (4) 

where D(j)
R is the relative distance between x and 

[E(x)
j, H

(x)
j].  

The relative distance D(j)
R is defined by the 

relations, 

D(j)
R = 

h
DM j )(

,   if   DM(j) ≤  h,       or 

D(j)
R = 1    otherwise 

(5) 

where  
       h is the width of all  Aq,j  fuzzy sets, (which is 
selected to be identical for all sets, due to the 

symmetrical properties of the technologic cycles),   
and 
       DM(j)

 is the metric distance, which can be 
defined and calculated via three main types of 
criteria of the following kind, 

• Euclidian distance: 

DM(j)
EU = ( )

2/1

1
,

)(












−∑

=

p

i
iij

x xE  (6) 

• Maximal distance: 

iij
x

pi

j xEDM MAX −=
≤≤

,
)(

1

)( max  (7) 

• Hamming distance: 

DM(j)
HAM   = ∑∑∑∑

====
−−−−

p

i
iij

x xE
1

,
)(  (8) 

It should be noted, also that, RD
(j)∈ [0, 1], and 

also D(j)
R ∈  [0, 1]. 

Once the degrees of recognition RD
(j) are 

determined, i.e., the procedures of PR stage are 
completed, then, the real (the current) outputs yRk 
of the system can be deduced, during the WE stage, 
which is developed as follows: 

yR
k = 

∑

∑

=

=
N

j

j
D

y
j

N

j

j
D

R

ER

1

)(

)(

1

)(

. (9) 

It must be noted also, that, the “width” vector 
H (y)

j, which is associated with the THEN part of 
Rule 

(j), should not be included in the WE stage, 
since the membership functions (for this particular 
case) are symmetrical and have identical width.  

Thus, the Rule 
(j), developed in (3), could be 

transformed as follows, 

Rule 
(j)

T : IF  [ E(x)
j, H

(x)
j ] THEN E(y)

j (10) 

Thus, the development of a Fuzzy Reasoning 
Model (FRM) is reduced (for this particular case) 
to the creation of Rule Bases from the type, 
presented in (10). The only exigency is, that, the 
input model variables must be preliminary 
specified. 

 
2.3. Development of the CPNN – structure and 

identification algorithms 
The structure of the CPNN (please see figure 2) 

consists of an input layer, a hidden layer, named 
Kohonen layer (with Q and P cells) and an output 
layer named a Grossberg layer (with N cells). The 
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CPNN is designed to approximate any kind of 
continuous function F, defined in compact set {R}, 
via specific sets of samples (XS, YS), where the XS 
vectors are randomly selected (drawn).  

Once the CPNN structure is determined, then, 
two main types of neural Algorithms, must be 
designed and applied during the FD, performed over 
the modules of the hot dip zinc galvanizing system 
– the Forward Algorithm (FORCPNN) and the 
Training Algorithm (TRACPNN). 

The FORCPNN-algorithm must be able to 
compute every kth output of the neural system, that 
corresponds to some particular kind of input x, at 
the time instant (randomly selected).  

The algorithmic structure is designed as 
follows: 

 

Stage AFOR. Determination of the winning cell 
“K” in the Kohonen layer of the CPNN via 
competitive rules – accordingly to the distances DK 
in the weight vector ωk(t), and with respect to the 
current input x, i.e.,  

( )[ ] ( )[ ]
( ) xt

xtDxtD

k

Pk

kK

Pk

Kk

−=

==

=

=

ωωωω

ωωωωωωωω

,1

,1

min

,min,

 (11) 

where ||ωk(t) – x|| is the Euclidian metric distance.  
 

Stage BFOR. Computation of the outputs 
yk

KOH(t) ∈  [0, 1] of the Kohonen layer by the 
winning-cell competition rule, i.e., 

yk
KOH(t) = 1,  if  k = K,    and 

 

yk
KOH(t) = 0,  otherwise 

(12) 

 

Stage CFOR. Computation of the outputs yk
GR(t) 

of the Grossberg layer by, 

( ) ( ) ( ) ( )tttyty K
j

k
j

N

k

k
KOHGR

k µµµµµµµµ =⋅= ∑
=1

 (13) 

where k
jµµµµ  is the weight, connecting the kth cell of 

the Kohonen layer to the j th cell of the Grossberg 
layer. 

The so-developed algorithms can provide a 
partially self-organization in the CPNN structure. 
Thus, the neural structure is capable to map a RQ-set 
into a RM-set, as a result of its training (via specific 
sets of training examples).  

The particular knowledge, acquired via the 
CPNN training process, is entirely represented by 
the associated weights ωk and µk.  

Since the CPNN could be considered as a 
“Hard” module of the Hybrid Neuro-fuzzy system, 
(linked with the “Soft” Fuzzy module), the weight 
vectors could also be considered as “stable” (since 
they emanate and connect the Kohonen and the 
Grossberg layer of the neural structure). The 
systems rule base can respectively be expressed as 
follows, 

IF  kωωωω    THEN kµµµµ  (14) 

where, µk = (µk
1, …, µk

m), and the effects of the H(j) 
are ignored for this particular case (please see the 
above explanations).  This practically means, that, 
each Rule(j) from the form (10), could be 
represented via the CPNN-rule (based on the 
properties of the Kohonen layer), developed under 
the form (14).  

The TRACPNN-algorithm of the hybrid Neuro-
fuzzy system will be developed as a self-organized 
semi-supervised training process, which must be 
associated (i.e., must react as a response), to the sets 
of specific couples of training samples (XS, YS). 

The TRACPNN-algorithm consists of two 
modules (algorithmic loops) – a Kohonen module, 
which is developed as an unsupervised process 
(and designed for training of the ωk - weights), and 
a Grossberg module, which is a truly supervised 
process (and respectively designed for training of 
the µk - weights).  

Since the number of the Kohonen cells must be 
selected in advance (but also must remain fixed 
during the training), the stages of the Kohonen 
algorithmic loop are developed as follows: 
 

Stage ATRA
KOH. Determination of the winning cell 

“K” in the Kohonen layer via (10). The calculation 
must be developed with respect to the current 
systems inputs XS, presented as samples (patterns). 
 

Stage BTRA
KOH. Computation of the outputs yk

KOH(t) 
of the Kohonen layer via (11), always with respect 
to the input samples. 
 

Stage CTRA
KOH. Adaptation of the Kohonen weights 

ωk, as follows, 

( ) ( )
( ) ( )[ ] ( )tyttX

tt

KOH
kkS

t

kk

⋅−ω−θ+

+−ω=ω

1

1
 (15) 

where 0 ≤ θt ≤ 1 represents the gain, which 
decreases monotonically with time (a harmonic 
series for θt = 1/t, which satisfies the convergence 
issue is selected and applied  in this study).  
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Once the ωk(t) are stabilized, (i.e., the 
adaptation process is completed), then the learning 
procedure could also begin into the Grossberg layer.  
 

Stage DTRA
GR. The desired output YS for each 

stabilized weight vector ωk(t) could now be 
generated via an adjustment of the weights, 
connecting the Kohonen cells and the Grossberg 
sells, by the following  relation, i.e.,  

( ) ( )
( )[ ] ( )tytY

tt

KOH
kk

j
S
j

k
j

k
j

⋅−µ−α+

+−µ=µ

1

1
 (16) 

where µk
j is the weight, connecting the kth cell from 

the Kohonen layer to the j th cell of the Grossberg 
layer; 
α ∈ [0, 1], is a constant update rate; 
YS

j is the jth component of the training sample 
(pattern) YS. 
 
3. Application of the developed hybrid 

neuro-fuzzy system for an enhanced FD 
in an industrial Hot dip zinc galvanizing 
system – i.e., under real operation 
conditions 
The created hybrid Neuro-fuzzy system was 

applied for enhanced Fault Diagnosis (FD) in an 
industrial Hot dip zinc system. 

The systems module, subjected to FD 
procedures, was the gas fired galvanizing furnace. 
All details, related to the systems processes and 
components are presented in [1]. 

The measurements were effectuated under real 
operation conditions and were in total 184 
measured pair data.  

The measured data samples represented 
respectively the gas flow rate (i.e., the systems 
inputs), and the concentration of carbon dioxide 
(CO2) in the outlet gas flow of the furnace (i.e., the 
systems outputs). The fuzzy rules (in the fuzzy 
reasoning module) were created via the Forward 
Algorithm (FORCPNN) and the Training Algorithm 
(TRACPNN). The performances of the resulting 
fuzzy model were tested via a replacement of the 
competitive algorithm (13) with the recognition 
algorithm (9).  

The Kohonen layer of the created CPNN 
consisted of 22 Kohonen cells, (generating 
respectively 22 fuzzy rules).  

The width of the fuzzy sets was selected to be h 
= 1.0, and the training (the learning) rate was 
determined to be αααα = 0.5. The performance index, 

of the system resulting from the utilization of the 22 
fuzzy rules was 0.2798. 

The current (the real) and the modeled results, 
obtained during the application of the created 
hybrid neuro-fuzzy system for FD of the gas fired 
galvanizing furnace are presented at figure 3. 
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Figure 3. Desired (solid line) and modeled (dashed line) 
FD decisions, generated under real operation of a gas 

furnace 
a) outputs of the system; b) predicted error 

 
The diagrams, presented at figure 3a show the 

desired systems outputs (presented by a solid line), 
and the modeled outputs (presented by a dashed 
line). 

Respectively the diagrams, presented at figure 
3b, show the corresponding predicted error, 
generated during the execution of the neural 
algorithms. 
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4. Conclusions 
4.1. A hybrid neuro-fuzzy system, designated 

for an enhanced FD in a complex industrial facility 
for zinc galvanizing was developed in this study – 
all necessary modular structures, the characteristics 
and the relationships in the fuzzy reasoning models, 
as well as and in the CPNN were created and 
applied for the purpose. 

4.2. Once the design of the fuzzy and neural 
modules was completed – then two main types of 
neural Algorithms, were developed – the Forward 
Algorithm (FORCPNN) and the Training Algorithm 
(TRACPNN).  

4.3. The so-developed hybrid neuro-fuzzy 
system as well as the created neural algorithms was 
applied for an enhanced FD in an industrial Hot dip 
zinc galvanizing system – i.e., utilized under real 
operation conditions. 
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