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Abstract. The present paper describes the development afdalar neuro-fuzzy system, designated for enhaaoed
flexible fault diagnosis. Some specific neural aions for identification, recognition, evaluatiamd classification of
the process parametric values are created ancedpplihe systems structure. The so-developed ffeary system is
then applied for fault diagnosis in an industriaiczgalvanizing facility, i.e., under real operai# conditions.
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1. Introduction relational models are designated mainly for systems
In the recent years, considerable efforts ofwith two (up to three) fuzzy inputs, i.e., they aw
engineers and scientists were focused on a creatidgfuite appropriate for multivariable systems [5, 7].
and a development of fuzzy and neuro-fuzzyThe so-developed matrixes (based on the available
system, designated for systems and/or process fautumerical data) are in general high-dimensional,
diagnosis, for adaptive control and supervision, asomplicated for computation and relatively complex

well as for modeling and prognosis of systems[5, 8]. This is due mainly to the fact, that, thedy
and/or process behavior [2, 8, 9, 10]. models must adapt the numerical data bases, (which

In general, such types of so advanced andn fact “carry” the modeling knowledge and where
highly-performing systems find their application the created fuzzy models must work), to some
mainly in the area of evaluation and real-timespecific environment (designed formally via some
control of the operational reliability in industria general linguistic methods and represented by
complexes, for optimal and adaptive control of membership grade calculations (i.e., functions) [5,
industrial processes and for on-line fault diagsosi 7, 8].
with continuous and real-time evaluation of the The second type of the fuzzy modeling
systems states [2, 3, 4, 7]. Some sophisticateryfuz methodologies is based on sets of fuzzy rules, that
modeling approaches were developed for themust relate the systems/process local input-output
purpose and respectively applied during the creatiorelations, (mostly in a linear and numerical we)) [
of specific fuzzy models, thus providing an 10, 11].
alternative but also extremely flexible modeling ~ The so-developed fuzzy models are in general
tools (compared to the traditional mathematicalquite simple, but at the same time also flexibld an
methods) [9, 10, 11]. The fuzzy modeling structurespowerful enough to treat multivariable systems (at
could be developed mainly by the application ofnumerical level) [9, 10, 11]. The issue here, tita,
two general types of methodologies. identification algorithms are in general rather

The first type of the fuzzy modeling complicated and usually involve linguistic approxi-
methodologies is based on a creation of fuzzymation techniques, non-linear programming and
relational matrixes (constructed respectively byleast-square optimization [10, 11]. Recently, Neura
fuzzy equations), that are supposed to relate th&letworks learning and generalization capacities are
systems/process input and output variables in a@lso applied into the development of the fuzzy
fuzzy manner [5, 7, 8]. algorithms of identification [2, 3, 12].

The information utilized for the creation of the The present paper describes the development of
fuzzy relational models (i.e., matrixes) could bea modular neuro-fuzzy system, designated for fault
either the measured numerical data (under realiagnosis. Some  specific  algorithms  for
operation conditions), either the simulated datadentification, recognition and classification dfet
bases (obtained during experiments, carried on @rocess parametric values are created and applied i
specific laboratory equipment) [4, 6, 8]. The so-the systems structure. The so-developed neuro-
created fuzzy models possess good generalizatiditizzy system is then applied for an enhanced fault
capacities and the relation equations are alse quitdiagnosis (FD) in an industrial zinc galvanizing
adequate. The issue here is, that, the creatdacility, i.e., under real operational conditions.
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2. Development of the neuro-fuzzy system, internal behavior of the system, i.e., since the
applied for an enhanced FD — creation of ~ systems internal logic is not, this particular case
the fuzzy models, the neural networks could be considered asBlack box” FD system.

These two (rather idealized) general structures
possess their advantages, but they also have their
specific issues [4, 5, 12]. So, our goal (for this
particular case), is to create a “hybrid” system,
Sdeveloped as a combination of these general
structures. Such a system shall possesguao-
fuzzy structureand is expected to be more flexible
and adaptable to the operation challenges.

All logistic and technologic structures, as well

structures and identification learning

algorithms
2.1. General characteristics and relationships of

the modular FD neuro-fuzzy system

Depending from the type and the characteristic

of the diagnosed process (and/or systeta)o
general optionsshould be considered during the
creation of the FD systems structures, figure 1.

Option A as all essential technologic and logistics processe
of the developed hot dip zinc galvanizing facility
The systems are presented in details in [1]. The general stnact
Internal logic of the created “hybrid” Neuro-fuzzy System,
X; IS kn.own Y designated for enhanced FD in a zinc galvanizing
=> IfXjisA => facility is presented at
Inputs THENY,isB; | Outputs figure 2.
(unknown) (unknown)
a) my ?
010
. m !
Option B S OO x| IFX,is
The systems s e > Apand | Y
input - output ml ot x| XelSAr >
X, behavior | v, =S O QO THEN
—>{ isknown |—> ! YisB
Outputs c 15 Fuzzy
Internal logic e g Reason
unknown 22.:82 Model
(a black box) 2868 (FRM)
Counter
b) Propagation
Figure 1. Options for development and applicatibn o Neural
Fuzzy and Neural modules Network
a) Option A— systems internal logic is known; (CPNN)

b) Option B— systems input-output behavior is known
Figure 2. General structure of a Hybrid,

The systems structure, shown figure 1a, Neuro-Fuzzy System (a “Grey Box")
represents the option, when the systems (process)
logic is known, but there is no preliminary The created structure is developed as a “Grey

knowledge (i.e., examples) for its input-output Box” and can perform an adequate modelling in a
behavior. For this particular case (referred agimely, reliable and cost-saving manner. The so-
“Option A”) it should be more convenient to developed neuro-fuzzy system is extremely
develop a fuzzy reasoning model as a set oldaptable and flexible and is therefore able to
IF/THEN fuzzy rules Such a model should be able perform FD over the physically damagegstems
to describe (and even to make a prognosis) of theomponents(i.e., components of logistics and/or
systems behavior. technological structures), but also over the
For the systems structure, shown at figure lbpehaviour of the systemsmain technologic
(and referred a¥Option B”) it is more convenient processeqi.e., the gas furnace heating processes,
to use the available input-output data to train ahe tank heating processes, the waste liquids
Neural Network (NN), and thus — to model the treatment and neutralization processtc., etc.).
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The Neural Network (NN) module is trained to fuzzy system for FD — the Back-propagation NN
receive three data flows as an inputs(BPNN) and the Counter-propagation NN (CPNN).
(measurements, effectuated over the electrical, The BPNN is well-known structure, which
electronic and mechanical components), which ar@ossesses good generalization capacities, antkis ab
mapped (i.e., processed via the NN learning ando represent various fuzzy processes functionally o
recognition algorithms) into two flows of numerical structurally. The issue here is that, the self-
values, which serve as inputs to the fuzzy reagpninconstruction of such a system is difficult. This is
model (i.e., the fuzzy algorithms). due to the fact, that, the gradient descent legrnin

In fact, the output data, generated by the NNalgorithm, (adopted by the BPNN) is a relatively
indicate (i.e., they are featuref)e degree of the slow process, which requires continuously repeated
failure/fault occurrence in the systems componentgresence of the training samples (species), inrorde
and/or process variablefthe generated outputs are to achieve the necessary convergence of the
numbers between 0 and 1), as well assiheal to  learning. These requirements in fact lead to
noise ratig reflecting the disturbances (the difficulties in the self-organization (i.e., thelfse
generated output are numbers between 0 and 20onstruction) of the system from the available data
The so-generated neural outputs (features) araded (measured, generated and simulated).
inputs to the fuzzy module, where the fuzzy retaio The CPNN is a two-layer network, which is
map (process) the submitted information and provideble to perform vector-to-vector mapping process
decisions (results)about the actual state(s) of (similar to the hetero-associative memory NN). The
systems components and process variables (undadvantage of the CPNN is that, it can be trained to
consideration). Therefore, the purpose for the perform associative mapping much faster, but with
creation of a flexibility “Hybrid” Neuro-Fuzzy adequate self-organization of its structure
structure is based of the following facts: (compared to the BPNN).

» The sets of numerical measurements provide in The CPNN is very useful in the pattern
general too much details (some noise andmapping and association as well as in data
disturbances are almost always presented in theompression and classification — some real merits,
numerical data flows), and could not be reallywhen FD must be performed over complicated
effective for on-line processing of the FD systems and/or processes (as the ones, developed in
features; a hot dip zinc galvanizing facility).

« The NN filtering, smoothing and mapping of the
processed numerical measurement flows inta2.2. Development of the Fuzzy reasoning model —
some kind offeature spacegi.e., a degree of structure and internal relations
failure/fault occurrence, a signal-to-noise ratio, It could be assumed, that, the system to be
etc.) could be more reliable with a combinationmodeled possessesnputs andn outputs, denoted
of a fuzzy controller (module). respectively byny, my, ..., mand i, ¥a, ..., Yo
Thus, the so-created Neuro-fuzzy hybrid By considering the input outpwaluesat different

structure shall be flexible and able to provide artime instants, as differentariables the systems

adaptive and enhanced FD in a real technologiglynamics could be expressed by the following
facility for hot dip zinc galvanizing. relation,

In cases, when the input da?a flows contain Yie = Fu(Xe, %oy . Xo) 1)
many various and very complex kinds of species -
then another option in the arrangement of the kybri Whereq corresponds tg-th variable.
systems structure can be created. In such kinds of The fuzzy reasoning mode(that must be
systems (named “fuzzy-neural systems”), the fuzzydeveloped) should be able to describe the systems
processing of the data flowgrecedesthe neural behavior adequately. Since the systems input-output
Computing_ Such hybnd fuzzy-neura| system firstrelationShipS are not known, they could be modeled
providesa dassification of all particular groups of atlinguistic levelby sets of IF-THEN rules (please
input species(performed by the fuzzy algorithms of See also figure 2), of the following form,
the fuzzy module), and after thae-discrimination ~ Rule™:
of the individual species in each classified group!F XiisAgjand ... andXqis Aq; THEN (2
(performed by the NN algorithms). Y1 is Byjand ... andYy is B

Two general types of NN structures are suitablevhere X; and Y, are the fuzzy systems variables
for the development of the actual hybrid Neuro-(corresponding to; and yi respectively), anddy;
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and B,; represent fuzzy sets (defined in symmetrical properties of the technologic cycles),
corresponding clusters of measurement/modelednd .

space). Thé\q; andB,,; sets (for this fuzzy model) DM? is the metric distance, which can be
are characterized bpembership functionselected defined and calculated via three main types of
symmetrical for this particular case), which arecriteria of the following kind,

respectively expressed via two functional e Euclidian distance:

parameters E%; andh®,; (respectivelyg®,, ; and 1/2

h%..), whereE¥; ,(XgE(y)m 8)) is the center of tha DMO¢, = [Zp:(E(X) =X )} (6)
set(Bm; set),andh™y; (h¥)) is the half width of 21

the Aq; and B sets. For this particular case the _ .

membership  functions are selected to be * Maximal distance:

symmetrical, because the diagnosed zing galvanizing  pm D ax =max(EX;j,i - Xi‘ )
processes possess symmetrical  characteristic 1<i<p
development — please see [1] for details on systems ing di ]
logistics and t%chnologic processes. * Hamming |stanse.
The Rule ¥ might then be restructured under 0 - ‘ (x), . _ ‘
the following form, DM ham .Z:lE L% (8)

Rule?: : It should be noted, also th&,? 1[0, 1], and
IF [EY,, H¥] THEN [EY), HY)] ) alsoD% [J [0, 1]. _
Once the degrees of recognitionRp? are
whereE®; = {E¥,, ..., E¥} and EY) = {EY.},  determined, i.e., the procedures of PR stage are

..., E¥} are the two vectors of the sets centerscompleted, therthe real (the current) outputs

(i.e., “central” vectors), which are associatedhwit of the systentan be deduced, during the WE stage,
the two vectors of sets widths (i.e., “width” which is developed as follows:

vectors), respectivelfH®, = {h® ;, ..., H® } and N
H(y)j — {h(y)l.,jv . h(y)p,j}. ZR(D])EEy)

Each couple of the kincEf?;, H¥] is able to VR = 172 9
create aninput rule pattern Each real (i.e., the “ N () ' ©)
current) numerical outputof the systemy?, is ZRD
created as eesponsdo the current numerical inputs )=
x® = [x7y, X%, ..., X, and can respectively be It must be noted also, that, the “width” vector
determined over the following two stages: H(Wj, which is associated with the THEN part of

« Stage A:Pattern Recognition (PR) Rule 9, should not be included in the WE stage,
» Stage B Weights Evaluation (WE).e., criteria  since the membership functions (for this particular
for adequateness case) are symmetrical and have identical width.

The Degree of recognitiorRp”, between the Thus, theRule ?, developed in (3), could be

input x aP)d th(e) developed (VRule?) patternof  transformed as follows,
. X, 07 . : _
trgfatlﬂ)nnd E™), H™], is determined by the following Rule;: IF [ E¥, H¥.] THEN EY (10)

Thus, the development of a Fuzzy Reasoning
Model (FRM) is reduced (for this particular case)

where DY is therelative distancebetweenx and [ the creation of Rule Bases from the type,

Ro® = 1 -DY% {x, [E¥), H]} 4

[E‘X),-, H(X’,-]. presented in (10)._The only exigency is, f[het, the
The relative distanc®®% is defined by the [NPut model variables must be preliminary

relations, specified.

. DM .
DO, = it DMO?<h, or 2.3. Development of the CPNN — structure and

_ h ) identification algorithms
DY%=1 otherwise The structure of the CPNN (please see figure 2)
where consists of an input layer, a hidden layer, named

h is the width of all Ay; fuzzy sets, (which is Kohonen layer (with Q and P cells) and an output
selected to be identical for all sets, due to thdayer named a Grossberg layer (with N cells). The
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CPNN is designed to approximate any kind of Since the CPNN could be considered as a

continuous functiork, defined in compact s¢R}, “Hard” module of the Hybrid Neuro-fuzzy system,
via specific sets of sampléX®, Y®), where thex®  (linked with the “Soft” Fuzzy module), the weight
vectorsare randomly selected (drawn). vectors could also be considered as “stable” (since

Once the CPNN structure is determined, thenthey emanate and connect the Kohonen and the
two main types of neural Algorithms, must be Grossberg layer of the neural structure). The
designed and applied during the FD, performed ovesystems rule base can respectively be expressed as
the modules of the hot dip zinc galvanizing systenfollows,

— the Forward Algorithm (FORCPNN) and the K K
Training Algorithm (TRACPNN). IF w* THEN p (14)

The FORCPNNalgorithm must be able to
compute everk™ output of the neural system, that
corresponds to some particular kind of inputat
the time instant (randomly selected).

The algorithmic structure is designed as
follows:

where,u* = ", ..., U5, and the effects of thegH
are ignored for this particular case (please see th
above explanations). This practically means, that,
each Rule? from the form (10), could be
represented via the CPNN-rule (based on the
properties of the Kohonen layer), developed under
Stage A°R. Determination of thevinning cell ~ the form (14).
“K” in the Kohonen |aye|f of the CPNN via TheTRACPNN-aIgO”thm of the hybnd Neuro-
competitive rules — accordingly to the distanB¥s  fuzzy system will be developed aself-organized
in the weight vector(t), and with respect to the Semi-supervised training procgswhich must be

current inpui, i.e., associated (i.e., must react as a response), sethe
of specific couples of training sample€’, Y°).

k[ K ]= - K[ k ]: The TRACPNN-algorithm consists of two

D@ (t) X|= min D7 jw (t) X modules (algorithmic loops) — lkohonen module

k=1P
. K (1) which is developed asn unsupervised process
= kTinPHw (t)- XH (and designed for training of the - weights), and
’ a Grossberg modulewhich is a trulysupervised
where [p(t) —x|| is the Euclidian metric distance.  process(and respectively designed for training of
or , thep® - weights).
Stage B°". Computation of the outputs Since the number of the Kohonen cells must be
Yior(® O [0, 1] of the Kohonen layer by the sglected in advance (but also must remain fixed

winning-cell competition rule.e., during the training), the stages of the Kohonen
Von(t) =1, if k=K, and (12) algorithmic loop are developed as follows:
Yon(t) = 0, otherwise Stage AR*on. Determination of thevinning cell

oR _ “K” in the Kohonen layer via (10). The calculation
Stage €°%. Computation of the outpuler(t)  must be developed with respect to the current
of the Grossberg layer by, systems inputX®, presented as samples (patterns).

N .
k Nk k()= K Stage B™on. Computation of the outputkon(t
t)= O t)=u™ (¢ =lage 5 koH p putskon(t)
Y'er(t) ElyKOH O t)=k70) (13) of the Kohonen layer via (11), always with respect
to the input samples.

where u'j‘ is the weight, connecting tHé" cell of

the Kohonen layer to th¥" cell of the Grossberg
layer.

The so-developed algorithms can provide a wk(t)zwk(t_1)+
partially self-organization in the CPNN structure. S K K
Thus, the neural structure is capable to mRS-aet +6 X 3(t) - w0t ‘1)][V Ko (t)
into aR"-set, as a result of its training (via specific
sets of training examples).

Stage C**on. Adaptation of the Kohonen weights
o, as follows,

(15)

where 0< 6, < 1 represents the gain, which
The particular knowledge acquired via the decreases monotonically with time (a harmonic

CPNN training process, is entirely represented b);eries' for6, = 14, which sfatisfi_es t_he convergence
the associatedveightses andpt issue is selected and applied in this study).
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Once the w(t) are stabilized, (i.e., the of the system resulting from the utilization of (2
adaptation process is completed), then the learnintyzzy rules was 0.2798.
procedure could also begin into the Grossberg layer ~ The current (the real) and the modeled results,
RA _ < obtained during the application of the created
Stage D™er. The desired outputY” for each  hybrid neuro-fuzzy system for FD of the gas fired

stabilized weight vectorw(t) could now be galvanizing furnace are presented at figure 3.
generated via anadjustment of the weights

connecting the Kohonen cells and the Grossberg QUtPuts
sells, by the following relation, i.e., zg
() =t -1)+ R A
Sk K (16) 54 AT A/ \/V\/ \/

o - -1 5 on ) . (A ANBA AR

wherell is the weight, connecting the' cell from 50 :

the Kohonen layer to th¥' cell of the Grossberg 48

layer; a6HE

o 00, 1], is a constant update rate; 44 C

YSj is the jth component of the training sample

(pattern)Y®. :2 7

L , 0 120 240 360 480 600207 840 960
3. Application of the developed hybrid

neuro-fuzzy system for an enhanced FD a) sl

in an industrial Hot dip zinc galvanizing

system — i.e., under real operation Predicted Error

conditions 2.0

The created hybrid Neuro-fuzzy system was 1.6
applied for enhanced Fault Diagnosis (FD) in an 1.2 A
industrial Hot dip zinc system. 0.8 : A

The systems module, subjected to FD o, Al 4 l‘ A 1A ‘ A
procedures, was thgas firedgalvanizing furnace oA I\ ,\f V \ A \ / : /\
All details, related to the systems processes and VIJW 1\ V [\
components are presented in [1]. 0.4 v \]

The measurements were effectuated under real -0-8 ¥ \ /
operation conditions and were in total84 -1.2 ¥

measured pair data 16

The measured data samples represented |
respectively thegas flow rate(i.e., the systems 0 120 240 360 480 600207 840 960
inputs), andthe concentration of carbon dioxide
(CO,) in the outlet gas flow of the furnace (i.e., the b) s]
systems outputs). The fuzzy rules (in the fuzzy Figure 3. Desired (solid line) and modeled (dadhre)
reasoning module) were created via fherward FD decisions, generated under real operation afsa g
Algorithm (FORCPNNpnd theTraining Algorithm furnace _
(TRACPNN). The performances of the resulting a) outputs of the system; b) predicted error
fuzzy modelvere tested via a replacement of the
competitive algorithm (13) with the recognition
algorithm (9).

The Kohonen layer of the created CPNN
consisted of 22 Kohonen cells (generating
respectively 22 fuzzy rules).

Thewidth of the fuzzy setgas selected to be
= 1.0, and the training (the learning)rate was
determined to be& = 0.5 The performance index,

The diagrams, presented at figure 3a show the
desired systems outputs (presented by a solid, line)
and the modeled outputs (presented by a dashed
line).

Respectively the diagrams, presented at figure
3b, show the corresponding predicted error,
generated during the execution of the neural
algorithms.
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4. Conclusions 3. Dimitrov, K.D.: Some application of Neural Networks for

4.1. A hybrid neuro-fuzzy system, designated Condition Monitoring in Industrial SystenisVIII National

. . . " Scientific and Technical Conference “ADP — 2009"583-
for an enhanced FD in a complex industrial facility —ggg P

for zinc galvanizing was developed in this study —4. Dimitrov, K.D.: Neural Networks for fault diagnosis and
all necessary modular structures, the charactesisti procehS_S ant;rgl in CO?Struction technologic systefufia,
and the relationships in the fuzzy reasoning models_Machine building” vol. 12, 1997, p. 250-255

.p y g mo dfa Kosko, B.:Neural Networks and Fuzzy SystefEsglewood
as well as and in the CPNN were created an

) Cliffs, N.J., Prentice-Hall, 1992
applied for the purpose. 6. Lind, M.: Representing Goals and Functions of Complex

4.2. Once the design of the fuzzy and neural Systems — an introduction to multilevel flow modgliiu
modules was completed — then two main types of ©f Dg”mark' Lynglt_)y, _1996” orithme 1 o
neural AIgorithms, were developed — tRerward 7. Mamdani, E.H.Application of fuzzy algorithms for control o

. - . dynamic plantsProc. IEEE, 2005, p. 1585-1589
Algorithm (FORCPNNpnd theTraining Algorithm g narendra, K., et alldentification and control of dynamic
(TRACPNN). systems using neural networkerans. Neural Networks,

4.3. The so-developed hybrid neuro-fuzzy vol.1,p.4-27,2000 . .
system as well as the created neural algorithms was Shaw. 1.S., Kruger, J.JNew fuzzy leaming model with

. . . . . recursive estimation for dynamic systerfRsizzy Sets and
applied for an enhanced FD in an industrial Hot dip g giems, vol. 49, p. 217_250 lgggy Y

zinc galvanizing system — i.e., utilized under real1o. Sugeno, M., Tanaka, KSuccessive identification of a fuzzy

operation conditions. model and its applicatiarFuzzy Sets and Systems, vol. 42,
p. 315-334, 1999
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