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Abstract. Simplified rheological model which gives the possibility more certainly describe the deformation behavior of 
candied fruits and to determine their shear characteristics in production process is proposed. 
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1. Introduction 

The production process of highly viscous 
products, such as candied fruits, is associated with 
the mechanical action of the working bodies of 
vehicles on the product at the different character of 
interaction with the working surface [1]. One type 
of such effects is the deformation under uniaxial 
compression at different rates. Behavior of the 
product in these conditions and, especially, 
rheological characteristics, as measured by the 
deformation, are different from their true values 
due to relaxation processes accompanying the 
deformation of the material being tested. For 
example, when forming candied product, the three-
dimensional deformation of the product is 
observed. These types of deformation characterize 
the compression characteristics of processes of 
candied fruits production [2-6]. 

 
2. Compression characteristics 

Knowing the characteristics of compression is 
necessary to improve production processes, 
development of resource-saving processes and 
equipment. At the same time, their importance for 
the candied fruit produced by the new technology 
is not presented in the literature [7-8]. 

Rheological model of P.A.Rebindera-M.1 is 
shown in figure 1. 

However, suggested (figure 1) is a simplified 
model M.2, which allows with greater confidence 
to describe the deformation behavior of the 
candied fruit masses and to determine their shear 
characteristics. 

Let us consider the deformation behavior of 
the model M.2 in more detail. 

Complete deformation model, in terms of 
compression (or extension) can be represented as 

the sum: 

21 εεε += . (1) 
 

 
                  a)                                    b) 
Figure 1. General rheological model of P.A. Rehbinder 
M.1 (a); simplified model of M.2 (b) for the case σ < σk 

 
The value ε1 represents the "elastic" part of the 

deformation, occurring immediately upon 
application of external load and instantly 
disappearing after unloading: 

1
1

Е

σ=ε . (2) 

The value of E1 is an "instantaneous elasticity 
modulus" or "elastic" modulus. 

Component of the deformation ε2 is 
"inelastic", but mechanically reversible part of the 
strain, which appears and disappears with a certain 
delay with respect to changes in external load. This 
corresponds to the above-mentioned "elastic spring 
back" loads. Dependence of ε2 on the time t can be 
calculated by solving a differential equation, 
characterizing the deformation behavior of a model 
of Kelvin, consisting of elements E2 and η: 

222 ε⋅η+ε⋅=σ &Е . (3) 
As usual, the dot above ε2 denotes 

differentiation with respect to the time. The value 
E2 is an "elastic" modulus, the value η has the 
dimension of the viscosity coefficient. 
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For a given law of change of the external 
stress over time σ(t), the solution of equation (3) 
has the form of: 
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Moreover, the constant const is determined 
from the initial condition: 

( )
022 0 ε==ε t . (5) 

By setting the law of change σ(t), ie mode of 
loading, you can use the formulas (1-5) to calculate 
the dependence of the total deformation on the 
time ε(t), describing the deformation behavior of 
the model. Using the model M.2 can be derived a 
general equation, which includes the total 
deformation, ε, but not its terms ε1 and ε2. To 
obtain this equation we should express ε2 as 

12 ε−ε=ε , where 12 ε−ε=ε &&&  and substitute it in 
(3), so that we obtain: 

( ) ( )112 ε−ε⋅η+ε−ε⋅=σ &&Е . (6) 
According to (2) there is: 

1
1

Е

σ=ε
&

& . (7) 

From (2), (6) (7) we obtain: 
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After some transformations we bring this 
equation to a more symmetrical form: 

( )ετ+ε⋅=σ⋅τ+σ && 21 Е  (9) 
where 
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Equation (9) has a very large community, 
because, in its most general form, expresses the 
relationship between stress, strain and their first 
derivatives in time. It is used in many fields of 
science for a quantitative description of the various 
relaxation phenomena (in this case instead of σ and 
ε in the equation of the type (9) are present the 
other values: D and E, B and H, etc.). In particular, 
equation (9) is widely used to describe the 
relaxation phenomena in solids, the internal 
friction in metals, etc. In these cases, it is usually 
called the equation of the "standard linear body," 
or "Voigt body." 

The solution of equation (9), with the given 
law σ(t), allows to calculate the dependence ε(t), 
not dividing ε on the elements ε1 and ε2. However, 
when analyzing the physical meaning of the 

obtained solutions and the visual representation of 
the deformation behavior of the model M.2, such 
division is necessary. 

Let us now consider the deformation behavior 
of the model M.2 in different modes of loading. 
The simplest possible mode is instantaneous 
application of external load, which in the future 
remains constant: σ = const = σ0. According to (2), 
immediately there appears an "elastic" part of the 
deformation: 
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Equation (3) becomes 
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Its solution with the initial condition of 
( ) 002 ==ε t  is: 

















−σ=ε η
− t

E

e
Е

2

1
2

0
2 . (13) 

With ∞→t  quantity ε2 tends to the value: 
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σ=ε=∞→ε ∞ . (14) 

The expression for the total deformation ε  is: 
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The general form of the dependence ε(t), 
under these conditions, is shown in figure 2 (left 
part).  

During the instantaneous complete removal of 
the external load the value ε1 instantly disappears, 
and ε2 decreases gradually over time. Solving 
equation (12), with the initial condition of 

( ) 2022 /0 Et σ=ε==ε ∞  (ie, with the "relaxation" 
ε2 from the previously achieved asymptotic value 

∞ε2 ), we find the law of decrease ε2 with time as 
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Nature of the change ε2(t) in the form of (16) 
is also shown in figure 2a (right part). If at some 
point in the process of reducing ε2 according to the 
law (16) the external load is being applied to a 
model again (at a certain value of deformation of 
ε2), then the solution of equation (12) for this case 
is provided by 
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a) b) c) 

Figure 2. Dependence of relative deformation on the time within the instantaneous application of a load:  

a - the initial deformation is 0, b - the initial deformation is different from 0; c - "Creep value" at 
2Е

t
η

p  

 

The value ε2 increases again, while striving 
with ∞→t  to the same asymptotic value 

002 Eσ=ε ∞ . In addition, the "elastic" part of the 

deformation 101 Eσ=ε  appears again. 
Should be considered that for the small values 

of "elastic" modulus E2 or at the large values of 
"parameters of viscosity" η, during the long loading 
time, the condition is carried out: 
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Part of the deformation ε2, approximately 
linearly, increases with time, according to formula 
(13) 
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This phenomenon is analogous to "steady 
creep" in the solids (Figure 2c). The dependence 
ε2(t) of this type should be observed for food 
products with high viscosity and low elasticity (for 
example, candied fruits). It should be noted that the 
"true" creep value in this case is absent, because 
plastic deformation does not occur and the model 
M.2 is mechanically reversible. 
 
3. Conclusions 

These relations completely describe the 
deformation behavior of the model M.2 at a 
constant external load. They are in a good 
agreement with the experimentally observed 
deformation behavior of such products as candied 
fruits. Comparison of the results, obtained by the 
formulas with the experimental curves allows 
determining values of models E1, E2, η parameters. 
In fact, E2 is easily determined by the value of the 
"elastic" part of the deformation (11). 

The value E2 can be estimated by the limiting 
value 202 Eσ=ε ∞ . If the value E2 is known 

already, the parameter η can be easily determined 
by analyzing the "curve of discharge" (16) or 
formula (19) for "creep value”. 

Thus, the theoretical dependences, obtained this 
way will allow calculating the shear characteristics 
of candied fruit in terms of their production. 
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