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Abstract. The present paper describes the development of a modular fuzzy-neural (FN) system, designated for practical 
application of fuzzy sets for determination of fuzzy membership functions. A NN-structure, possessing a back 
propagation learning algorithm, which is developed under monotonic function constraints, is applied for generation of 
fuzzy membership functions. The so-developed FN structures and the generated fuzzy membership functions are then 
applied for evaluation of technological and reliability characteristics, but also for revealing the relationships, existing 
between the properties of some particular industrial products (e.g., XPS thermal insulation boards, applied in 
construction industry). 
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1. Introduction  

The issues for practical application of Fuzzy 
Logic (FL) and fuzzy membership functions are still 
actual, since the sophisticated (mathematical) fuzzy 
relations are useful for specific research, but they 
often are too restrictive for a real industrial 
application [6, 8].  

Lately, there has been some rapid advance in 
the application of Neural Networks (NN) and fuzzy 
sets, since considerable efforts of the engineers and 
scientists were focused on a creation and a 
development of fuzzy and fuzzy-neural systems, 
designated for adaptive control and fault diagnosis, 
but also for modeling and prognosis of systems 
and/or process behavior [2, 4, 7, 10]. 

The input-output pairs, which are used in 
hybrid Fuzzy-Neural (FN) systems are expressed as 
“IF – THEN” rules in the FL structure and relate 
respectively the fuzzy variables with inexact values 
[5, 8, 10]. The FN-structures became thus capable 
to create an approximation framework, that can be 
used for generalization of the “IF – THEN” rules 
through learning from examples (in accordance with 
the adaptive nature of the NN learning procedures) 
[1, 3, 9, 11]. 

The present paper describes the development of 
a modular FN-system, designated for practical 
application of fuzzy sets for determination of fuzzy 
membership functions. A NN structure, possessing 
a back propagation learning algorithm, which is 
developed under monotonic function constraints is 
applied for generation and modeling of fuzzy 
membership functions. The so-developed FN-
structures, and respectively the generated fuzzy 
membership functions are then applied for 

evaluation of technological and reliability 
characteristics, as well as for revealing the 
relationships, existing between the properties of 
some particular industrial products (e.g., XPS 
thermal insulation boards, applied in construction 
industry). 

 
2. Definition of fuzzy membership functions 

and development of NN modeling 
structure 
The original basis for the fuzzy sets was to 

consider a fuzzy membership function MFy(X), that 
is capable to associate the observations X, 
expressed as a vector variable X = (x1, …, xm) with 
a real value in the interval [0, 1], please see [6, 10].  

The real issue, related to the practical 
application of the fuzzy sets, is to find out a fuzzy 
membership function MFy(X), in those cases, when 
the dimension of the variable X is relatively high. 
Generally, the fuzzy membership functions are 
monotonic, and can respectively be defined by a 
monotonic interpolation curve, which passes 
through all the data points [6, 10].  

One of the most serious problems, which must 
be solved prior to the fuzzy sets in a real (i.e., 
practical) situations, is the lack of strict assumptions 
and/or sophisticated construction techniques, that 
can be used by the reliability engineers. Therefore, 
the generation of fuzzy membership functions 
should be based on subjective judgments, developed 
for a particular problems domain.  

A potential solution of this particular problem 
includes an application of NN interpolation 
techniques for generation and modeling of the fuzzy 
membership functions.  



RECENT, Vol. 13, no. 1(34), March, 2012 

37 

One of the most relevant NN-structures is the 
three-layered NN, implemented with a Back-
propagation Least Mean Square (BPLMS) learning 
algorithm. The topology of such NN is shown in 
Figure 1.  

x0

w 00

w
10

0

1

2

x1

xm

n

w
20

w
0m

w
n0

w
nm

y2
y

y1

y0

y n

x0

w 00

w
10

00

11

22

x1

xm

nn

w
20

w
0m

w
n0

w
nm

y2
y

y1

y0

y n

 
Figure 1. Topology of a three-layer NN with one hidden 

layer and a single output 
 

The BPLMS learning algorithm is an 
integrative gradient descent algorithm, designed to 
minimize the mean square error between the actual 
output, generated by the NN, and the desired output 
of the structure, via a modification of the NN 
weights during the learning procedures. During the 
development of the BPLMS algorithm, each node 
(i.e., neuron) of the hidden layer in the NN structure 
operates with a sigmoid transfer function F(S), 
expressed by following relation:  

F(S) = {1 + exp[- (S – δ)]} -1 (1) 

where: 
S is the sum of the weighted inputs to each node;  
δ – the threshold (represented as an arbitrary non-

zero number). 
The so-created NN will perform a 

transformation of the data from the input vector X, 
to the output vector Y, i.e., 

Y =  M (X) (2) 

The main goal here, consists in the 
determination of the mapping function M, which is 
capable to transform the vector of conditions (i.e., 
the inputs) X, to a vector of the corresponding 
conclusions (i.e., the outputs) Y, for some specific 
cause-effect relationships.  

For this particular NN with a single output 
(presented in Figure 1) the relation is as follows: 

y = M (X) (3) 

where “y” is a scalar output function for the NN. 
For the actual case, the single output node of 

the NN, expresses the property, that, the output “y” 
can represent only a single conclusion, generated by 
a fuzzy decision rule.  

If there are “n” output nodes, that represent “N” 
functions (i.e., when multiple conclusions can exist), 
then, each of these “N” functions should respect-
tively be represented by a single output node NN.  

With respect to the NN-structure developed in 
Figure 1, and in accordance with relation (1), the 
output of the NN is 
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where: 
αi is the threshold for the output node of the NN 

structure; 
zi, (i = 1, …, k) – the output of the i-th hidden node 

from the hidden layer of the NN. 
With respect to relation (1), the output of i-th 

hidden node, may be determined as follows, 

zi = [1 + exp (–Wi, )]X ′ -1 (5) 

where: 
X is the input vector;  
Wi = (wi0, wi1, … , wim) is i-th matrix of weights 

(please see again Figure 1). 
The output of the NN can then be defined as 

follows 

y = [1 + exp[ 1-1

i
1

0 )]}))XWexp(1( −

=
′−++∑

k

i
izα . (6) 

For resolving some practical calculations 
issues, the vector components xj  can be normalized 
usually in the interval [0, 1] (via a linear 
transformation).  

The training process of the NN uses a set of 
samples, obtained via functional mapping that can 
be learned by the NN (i.e., via the BPLMS 
algorithm), and usually represents an interpolation 
issue. When the learning process of the NN is 
accomplished (i.e., the NN structure has adopted the 
training set), the NN becomes capable to implement 
a particular function, which passes through the 
points, defined by the training sets. 

In general, a NN-structure, with BPLMS 
algorithm, one hidden layer and sigmoid activation 
functions, is capable to approximate almost any 
continuous function [1, 7, 11]. 
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The data set for each particular problem, can be 
represented as a pair [X, y], which must be capable 
to describe the relationships, existing between X and 
y. If such data are submitted to a NN, (with a 
BPLMS learning algorithm), then, the NN-structure 
should be able to learn these data and to generate a 
“fitting” function, of the form, described by 
equation (6), (under the condition, that the NN 
posses enough hidden nodes).  

One of the objectives of the actual study, is to 
generalize the knowledge, represented by the 
individual production rules (expressed as fuzzy 
rules), rather then simply to rehearse these data, i.e., 
the FN-structure should be able to interpolate the 
data in an adequate way. In order to obtain a regular 
curve fitting, which is based on a limited number of 
training points, some heuristics knowledge should 
be applied.  

For the actual case, the BPLMS shall be based 
on a monotonically selected constraints (during the 
execution of the learning process), so that a 
monotonic function could be generated. In fact, the 
monotonic feature is one of the most important 
characteristics of the fuzzy membership functions 
[5, 6, 8, 10], and could be defined as follows: “y is 
monotonic in xi“ if  

[y (X | xi = 1β ) > y (X | xi = 2β )] (7) 

for [ 1β > 2β ].  
The relation (7) expresses a monotonic 

increasing function, and respectively, the fuzzy 
membership function (to be generated via the FN 
structure under BPLMS learning algorithm) shall 
also be monotonic.  

The NN structure (please see Figure 1) applied 
for the generalization of the monotonic function, 
possesses three major features, which are related to 
the generation of a fuzzy membership function, and 
respectively are as follows: 
a) In cases, when the NN learning procedures must 

be carried out under the restriction for 
monotonically development, the y function is 
also monotonic; 

b) The y function must be continuous; 
c) The y function has values in the open interval (0, 

1), which practically means, that if the two 
extreme function values ymax and ymin can be 
defined, then the y function may be 
implemented through a learning process, in 
such a way, that the following relation can be 
valid, 

0 < ymin ≤ y ≤  ymax < 1 (8) 

It must be emphasized, that, an y function, 
which possess these three features, and respectively 
is implemented by such type of NN structure, 
represents in fact a fuzzy membership function. Still, 
the so-generated function however, is not a normal 
function, since the two extreme values ymax and ymin 
are not 1 and 0 respectively. The normalization of 
the y function can be developed via a simple 
mathematical rule for linear transformation, which 
has the following form, 

y′ = (y – ymin) / (ymax – ymin), (9) 

so that ∈′y [0, 1].  
Such normalization provides possibilities for all 

monotonic y-functions, generated by such type of 
NN structure, to serve as fuzzy membership 
functions.  

 
3. Development of algorithm for generation 

of fuzzy membership functions via 
BPLMS network 
In many practical cases, there are some specific 

sets of process data, (obtained via practical studies, 
measurements, simulation, associative techniques, 
etc.,), that could be utilized for formulation of fuzzy 
functions. These fuzzy functions can, than be 
applied for generation of fuzzy decisions and 
concepts, and respectively applied in engineering 
practice (e.g., for adaptive control and supervision, 
for generation of final and complex decisions, for 
evaluation of process characteristics in industrial 
systems, etc.). 

A particular kind of neural algorithm, (denoted 
as NEUMEM) may therefore be developed, and 
respectively applied for analysis and evaluation of 
the different system’s characteristics.  

The stages of the developed “NEUMEM”-
algorithm are as follows: 

 

Stage 1. Analysis and verification of existing 
monotonic correlation between the input data X and 
the output(s) y. The verification should be based on 
the common knowledge about the existing 
relationships between these two variables. In cases, 
when this condition can not be satisfied – then a 
decomposition and/or a transformation of X must be 
performed. The result of these procedures is the 
generation of monotonic relationship.  
 

Stage 2.  Construction of a data set {DS}, in which 
each observation and/or measurement “d”, must be 
a data point of the type d(X, y) ∈  {DS}. For 
facilitation of the computations during the NN 
training, a normalization procedures on X, in the 



RECENT, Vol. 13, no. 1(34), March, 2012 

39 

interval [0, 1], and on y, respectively in the interval 
[ymin, ymax], should be performed. During the 
normalization process, the interval of values  
[ymin, ymax] should be the desired range within the 
interval (0, 1).  
 

Stage 3. Determination of particular sets {DSF} and 
{D IF}, such that, d ∈  {D SF}, if d is a superior 
frontier point of {DS}, and d ∈  {D IF}, if d is a 
inferior frontier point of {DS}. The NN structure 
must therefore be trained via learning sets of the 
type {DSF} and {DIF} respectively, and under the 
condition of monotonic feature. As a result of the 
training, two specific fuzzy functions of the type 
MSFy(X) and MIFy(X) should be generated.  

 
4. Application of the created FN-structures 

for evaluation of technological and 
reliability characteristics in industrial 
products 
The so-developed FN structures (please, see 

Figure 1) are already capable to generalize fuzzy 
membership functions, on the basis of a human 
knowledge, and by using the NEUMEM-algorithm.  

In many practical cases, the only existing 
preliminary knowledge (related to the generation of 
fuzzy membership functions) is the primary set of 
data, obtained during the practical realization of 
industrial products. 

In Table 1 are generalized the so-called “raw” 
data, that are related to the practical realization of 
multi-layered XPS foam boards, designated for 
construction thermal insulation, and manufactured 
in a XPS manufacturing industrial complex, 
(located near the town of Varna, Bulgaria). The 
preference data for eight different types of products 
(i.e., of multi-layered boards) are available.  

The main goal of this study, includes a 
determination of the fuzzy relationships, that may 
exist between the preferences of the consumers, and 
some specific criteria, (describing the technological 
and reliability characteristics of the products).  

For this actual case, the particular set of criteria 
Ci, may be defined as follows:  
• C1 – density (kg/m3);  
• C2 – tension pressure (kPa);  
• C3 – price per cubic meter (EU);  
• C4 – conductivity (×10-3) - thermal insulation 

capacities for 10± 0.3oC;  
• C5 – duration of exploitation (i.e., reliability 

resource), with full retention of the technological 
characteristics and the reliability properties, i.e., 
with no degradation occurred (months).  

The so-obtained data (presented in Table 1), 
were based on the measurements and evaluation, 
performed under real exploitation conditions, as 
well as on some laboratory simulations. 

A FN-structure is used for generation of a 
fuzzy function, that is capable to reveal the 
relationships between the structured criteria (i.e., 
from C1 thru C5). 

The columns in Table 1, represent the original 
data on eight types of XPS products, as well as their 
ratings (R), which are respectively normalized to  
[0, 1], (for the training purposes). 

Columns C1 thru C5 contain the original data, 
as well as the normalized ratings (NC1 thru NC5), 
over the selected five criteria, that are considered 
during the evaluation of the XPS multilayered foam 
boards. 

 
Table 1. Original data on 10 types of multi-layered XPS 

boards, applied for construction purposes 
No Type C1 C2 C3 C4 C5 Rank 

  NC1 NC2 NC3 NC4 NC5  
1 A20 17.1 350 101 34 185 0.75 
  0.58 0.65 0.66 0.55 0.60  

2 A30 17.3 350 101 35 183 0.70 
  0.62 0.65 0.66 0.57 0.56  

3 A40 17.2 354 104 35 182 0.65 
  0,60 0.60 0.72 0.57 0.54  

4 A50 17.4 360 104 37 187 0.55 
  0.66 0.52 0.72 0.63 0.44  

5 A60 17.4 360 110 38 187 0.50 
  0.66 0.52 0.88 0.68 0.44  

6 B5 16.8 355 103 34 183 0.45 
  0.55 0.48 0.68 0.55 0.56  

7 B10 16.7 355 103 34 185 0.40 
  0.45 0.48 0.68 0.55 0.60  

8 F4 15.6 350 101 37 182 0.30 
  0.33 0.65 0.66 0.63 0.74  

 
Each row of Table 1 represents a training 

sample for the developed BPLMS network. For 
practical convenience, already transformed criteria 
values were used, in order to ensure, that the fuzzy 
functions would always be monotonically 
increasing. The last column of Table 1 represents 
the rank for each type of the XPS-product, which is 
expressed as normalized values, corresponding to 
the No, shown in the first column of Table 1. The 
so-determined values constitute the y-outputs of the 
neural structure, obtained via equation (6).  

The developed NN contained 10 hidden nodes 
(neurons) in its hidden layer, and the learning 
process is performed via a BPLMS learning 
algorithm (developed under the requirements for 
monotonic restriction). Therefore, a generalization 
of the fuzzy functions was obtained. 
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The NN-structure was trained with about 2000 
learning iterations. When the learning process has 
been completed, the NN was able to generate fuzzy 
membership functions, (represented by equation 
(6)), by using the weight matrixes, presented in 
Table 2. The so-developed application shows, that 
almost any kind of fuzzy function can be generated 
via monotonic NN model, but what is more 
important is, that the NN is also capable to provide 
some important fuzzy reasoning information.  

 
Table 2. The NN weight matrixes for the fuzzy function, 

generated for the XPS-products 
No wi0 wi1 wi2 wi3 ααααi 
1 0.374 0.875 0.667 0.074 -2.256 
2 1.076 0.946 0.588 0.899 -0.968 
3 -1.259 0.971 -0.477 0.973 1.981 
4 2.793 -0.045 0.299 0.911 -3.113 
5 0.698 1.457 0.024 -0.214 -0.078 
6 -1.659 2.651 0.051 0.534 2.145 
7 1.244 1.024 0.782 0.498 3.182 
8 -0765 0.039 0.964 0.337 1.883 

 
In the cases when, the sales & management 

team of the production company wishes to know 
what could be the optimal application of each type 
of the already manufactured XPS multilayered 
boards, as well as of any possible new type of sub-
product, the so-generated fuzzy function are capable 
to reveal the corresponding  rank for each product.   

For example, for an existing XPS-product of 
the type A50, the rank is 0.55, while for a new and 
ready to be developed product of the type A50+ 
(characterized by the following criteria values:  
C1 = 17.48; C2 = 363; C3 = 106; C4 = 36 and  
C5 = 140), the rank, generated by the fuzzy function 
will be 0.565, i.e., the new product could 
successfully be developed and applied in real 
operation conditions.  
 
5. Conclusions 

5.1. An NN-modelling structure with BPLMS 
learning algorithm, one hidden layer and a single 
output, corresponding to y-function, which can be 
used as a fuzzy membership function, were 
developed in the present study.  

5.2. A particular NEUMEM-algorithm, utilized 
for generation of fuzzy membership functions via 
BPLMS network was developed and applied for the 
purpose.  

5.3. The so-developed NN structure, the 
NEUMEM-algorithm and respectively the 
generated fuzzy membership functions were applied 
for evaluation of technological and reliability 
characteristics of manufactured XPS-industrial 

products (multi-layer boards, applied for 
construction thermal insulation), and under real 
operation conditions. 
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