

47

ROBOT CONTROL FOR AVOID SELF-COLLISIONS

Aurel FRATU, Mariana FRATU
Transilvania University of Brasov, Romania

Abstract. The present paper generally relates to robots, more specifically to robots acting autonomously and requiring a
safety method to avoid collisions with other objects as well as collision between one moveable segments of the robot.
The authors have tested an avoid collisions method on complex simulation scenarios involving a virtual robot and have
estimated collision-free actions. The virtual robot is able to react to avoid the obstacles while executing the robotic
tasks. This was shown experimentally with a virtual system. This kind of robot’s behaviour simulation will be necessary
in real applications, where interactions between robot and her environment are vital.

Keywords: self-collision prevention method, collision avoidance control, dynamic simulation protocol

1. Introduction

When a trajectory of a robot end-effector is
controlled, a target state needs to be defined. The
target state is, for example, defined by an object
handled by a manipulating arm of a robot. In
general, the position of the object can be described
by three parameters. In addition to the object
position, it is often necessary to describe a spatial
orientation by Euler-angles for example,

To carry out the movement of an end-effector
of a robot, the trajectory is usually generated by
mapping increments from a control parameter space
as characteristic point, on a configuration space. In
robotics, the characteristic point is often defined as
a reference point of the end-effector.

The control parameter space or task space is the
space of the command elements. The control
parameter space is composed of the command
elements. The command (also “target” or “task”)
elements are the elements of a respective command
vector. These elements define a useful description
about what should be controlled, for example, the
position and the orientation of an end-effector. The
configuration space is the space of controllable
degrees of freedom. The configuration space can be
composed of individual joints of a robot and/or
more complex kinematics mechanisms having
controllable degrees of freedom.

Task coordinates refer to coordinates in which
the movement of the effector is described. There are
many ways to describe end-effector motions.

To describe the positions of the effectors, the x,
y and z elements of a position vector are commonly
chosen. For spatial orientations, the task is often
described in Euler angles or quaternions. In many
cases, special descriptions for a task are used.

Task space refers to the space that is described
by the task coordinates. For example, if the hand

position of a robot is controlled in x, y and z
direction, the task space has a dimension of three
and is described by these coordinates.

Trajectory is a continuous path describing the
motion of a system. The trajectory can describe the
path of the individual joints or a path represented in
the task coordinates.

Conventionally, targets of robots were provided
by operators and the robots simply tracked planned
trajectories. The safety method in conventional
robots is an emergency stop method that simply
freezes motions of the actuators, if any motions
were being performed.

Modern robots, in particular anthropomorphic
robots, are expected to work outside the typical
environment such as factories. The modern robots
need to interact with dynamic environment that is
less predictable. Thus, there is a need for a more
advanced safety method, hereinafter referred to as a
collision avoidance method instead of the
emergency stop method.

The advantage of using the collision avoidance
is not only safety. The collision avoidance does not
necessarily stop the robot's target reaching motions
and may expand the robot's working range.

2. Collision avoidance methods

The known collision avoidance methods may
be divided into two categories. One category of
collision avoidance method is a planning (non real-
time) method which generates trajectories taking
obstacles into account.

These methods are difficult to apply to
interactive motions because the computation time
becomes longer as the degrees of freedom of robots
(e.g., anthropomorphic robots) increase.

Another category of the collision avoidance is
reactive (real-time) collision avoidance methods.

RECENT, Vol. 13, no. 1(34), March, 2012

48

The reactive collision avoidance modifies
trajectories that are quite simple such as line
segments connecting current positions and target
positions [1].

In order to use this method, the direction of
avoidance and how to switch the priority between
target reaching motions and collision avoidance
motions must be decided depending on the
magnitude of danger of collisions in real-time. For
instance, if the distance between segments is large
enough, target reaching motions should have higher
priority than collision avoidance motions.

2.1. Efficient collision avoidance technique

The motion control of the robot includes a
collision avoidance module designed for calculating
the two closest points of different segments of the
robot connected to each other via at least one joint
or two closest points of a segment of the robot and
another object. The collision avoidance module also
controls the collision avoidance action only in the
dimension along the line connecting between the
two closest points.

It is an objective of the present paper to provide
an efficient collision avoidance technique for a
robot which minimizes interferences with the task
execution of the robot.

In the strategy for controlling a robot, a target
for a motion of the robot is defined. A motion
control signal adapted for the robot reaching the
target is calculated.

A collision avoidance control signal based on
the closest points of different segments of the robot
connected to each other via at least one joint or a
segment of the robot and another object is
calculated.

The influence of the motion control signal and
the influence of the collision avoidance control
signal are combined.

The influence of the motion control output
signal is higher when a calculated collision risk is
lower. The influence of the collision avoidance
control output signal is higher when the calculated
collision risk is higher.

The motion of the robot is controlled according
to the combination of the signal’s influence. A soft
task switching between target reaching by motion
and collision avoidance is achieved by gradually
changing the influence.

The influence of the collision avoidance output
signal remains zero as long as the distance between
the closest points is larger than a preset avoidance
threshold distance.

The motion control module of the robot
includes a collision avoidance module for
calculating the two closest points of different
segments of the robot connected to each other via at
least one joint or a segment of the robot and another
object.

The motion control module also controls
avoidance action only in the dimension along a line
connecting between the two closest points.

One characterization of the present paper also
provides a computer program product embedded in
a robot for implementing a motion control unit.

The motion control unit includes, among
others, a distance computing module, a motion
control unit, a collision avoidance module, and a
blending control unit.

2.2. The distance computing module

The distance computing module calculates the
two closest points of different segments of the robot
connected to each other via at least one joint or a
segment of the robot and another object.

The collision avoidance module is provided
with an output signal from the distance computing
module. The blending control unit combines the
weighted output control signals of the motion
control module and the collision avoidance control
module. The weight of the motion control output
signal is higher when a calculated collision risk is
lower. The weight of the collision avoidance control
output signal is higher when the calculated collision
risk is higher.

The method can be implemented on an
anthropomorphic robot such as the robot presented
in Figure 1. For first example, the authors have used
a virtual serial robot, which manipulate a cubical
object. The authors have created all bodies and
connect them if desired with proper joints.

For example, the 3DOF model is shown below
integrated into 3D Cartesian space. Here, the multi-
body library provides three-dimensional mechanical
components to model rigid multi-body robot
system. The robot system is built by connecting
blocks representing parts of the robot like link
bodies, joints, actuators and gripper.

In this section the authors will describe how to
render a planning scenario in the form of constraints
for the constraint-based planning framework.

Assume that the geometry representing the
robots and obstacles is given, as well as prescribed
motion, simulated for the obstacles over time [2].
Informatics system then defines constraints that will
restrict the motion of the robots to meet the design

RECENT, Vol. 13, no. 1(34), March, 2012

49

specifications, and also guide the robots to complete
the planning tasks such as the collision will be
avoided.

The simulation methodology uses a number of
possible scenarios and involves some sequences of
animation, as one can see in the Figure 1.

Figure 1. Anthropomorphic robotic arm

In Figure 1 is illustrated an anthropomorphic

robotic arm having three segments where each
segment comprises one or two spheres.

The basic essence of this approach is to
describe each rigid object in the planning scene as a
dynamical system, which is characterized by its
state variables (i.e. position, orientation, linear and
angular velocity). In this framework, a robot arm
can be a collection of rigid bodies, subject to the
influence of various forces in the workspace, and
restricted by various motion constraints.

This transforms a motion planning problem
into a problem of defining suitable constraints, and
then simulating the rigid body dynamics of the
scene with each constraint acting as a virtual force
on the objects such as the collision will be avoided
[3].

For this example, the authors use a virtual serial
robot, which manipulate a virtual cubical object.
The authors have created all bodies and connect
them if desired with proper joints.

Here, the multi-body library provides three-
dimensional mechanical components to model rigid
multi-body robot system. The robot system is built

by connecting blocks representing parts of the robot
like link bodies, joints, actuators and gripper.

The simulation methodology uses a number of
possible scenarios and involves some sequences of
animation, as one can see in the Figure 1.

The dynamic simulation of multi-body systems
becomes very interested when the robot manipulator
must interact with the mobile objects, where the
success will depend only on the capabilities of the
robots. In this example, the self-collision detection
is analyzed as well as test robot control algorithms
[4].

Proposed scheme for dynamic simulation or
animation, using the distance computation
algorithm is an iterative process which continuously
inserts and deletes the object pairs from a stack
according to their approximate time to collision, as
the objects move in a dynamic environment.

Although many fast methods of animation have
been proposed, few techniques are currently able to
dynamically animate.

The virtual system was implemented on a
programming platform, using Delphi object-
oriented programming language [5].

RECENT, Vol. 13, no. 1(34), March, 2012

50

The Delphi source code for this application
(only some procedures) is shown below.

{$R *.dfm}
procedure TForm1.TrackBar1Change(Sender: TObject);
begin
 glCylinder1.TurnAngle:=trackbar1.Position;
 Valuex.Caption:='rotor1='+floattostr(trackbar1.Position);
end;

procedure TForm1.TrackBar2Change(Sender: TObject);
begin
 glCylinder2.TurnAngle:=trackbar2.Position;
 Valuey.Caption:='rotor2='+floattostr(trackbar2.Position);
end;

 procedure TForm1.TrackBar3Change(Sender: TObject);
begin
 glCylinder3.TurnAngle:=trackbar3.Position;
 Valuez.Caption:='rotor3='+floattostr(trackbar3.Position);
end;

 procedure TForm1.TrackBar4Change(Sender: TObject);
begin
 glCylinder4.TurnAngle:=trackbar4.Position;
 Valuex2.Caption:='rotor4='+floattostr(trackbar4.Position);
end;

 procedure TForm1.TrackBar5Change(Sender: TObject);
begin
 pensa1.Position.Z:=trackbar5.Position/100;
 pensa2.Position.Z:=-trackbar5.Position/100;
 Valuecleste.Caption:='Cleste='+floattostr(trackbar5.Position);
end;

procedure TForm1.GLSceneViewer1MouseDown(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
begin
soarece:=true;
end;

procedure TForm1.GLSceneViewer1MouseUp(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
begin
soarece:=false;
end;

procedure TForm1.GLSceneViewer1MouseMove(Sender: TObject;
 Shift: TShiftState; X, Y: Integer);
begin
 if(soarece)then
 begin
 if(x1-X<0)then
 glcube1.TurnAngle:=glcube1.TurnAngle+2
 else
 glcube1.TurnAngle:=glcube1.TurnAngle-2;
//glcamera1.MoveAroundTarget(x1-x,y1-y);
 x1:=x;
 y1:=y;
 end;
end.

The strategy for dynamic simulation or

animation, using the distance computation
algorithm is an iterative process which continuously
inserts and deletes the object pairs from a heap
according to their approximate time to collision, as
the objects move in a dynamic environment. The
simulation method purely exploits the spatial

arrangement of the two end-effectors without any
other information.

The end-effectors pair which has a small
separation is likely to have an impact within the
next few time instances, and those virtual pairs
which are far apart from each other cannot possibly
come to interfere with each other until certain time.

For spatial tests to reduce the number of virtual
pairs judicious comparisons, the authors assume
that the environment is quite free and the end-
effectors move in such a way that the geometric
coherence can be preserved, i.e. the assumption that
the motion is essentially continuous in time domain.

3. Conclusion

This paper gives an application of the collision
detection algorithm for a virtual system with a
virtual robot. The authors have applied this
algorithm to perform collision detection. This
algorithm has been utilized in dynamic simulation
as well as in a virtual environment. This application
attests for the practicality of the algorithms and the
importance of the problem natures. This algorithm
and the distance computation method have been
used in the dynamics simulator written in Delphi
language.

The essential performance of this dynamic
simulator is the ability to simulate of small
mechanical parts of a robot arm in real time. It
reduces the frequency of the collision checks
significantly and helps to speed up the calculations
of the dynamic simulator considerably.

References
1. Fernandez-Madrigal, J-A. et al. (2008) A software

engineering approach for the development of
heterogeneous robotic applications. Proceeding of Robotics
and Computer-Integrated Manufacturing, no. 24, p.150-166

2. Fleury, G., Lacomme, Ph., Tanguy, A. (2006) Simulation an
eveniments discrets. EYROLLES, 2006

3. Yared, R. et al. (2007) Collision prevention using group
communication for asynchronous cooperative mobile robots.
Proceeding of the 21st IEEE International Conference on
Advanced Information Networking and Applications
(AINA’07), ISBN: 0-7695-2846-5, p. 244-249

4. Zucker, M., Kuffner, J., Branicky, M: Multipartite RRTs for
rapid replanning in dynamic environments. Proceeding of
the IEEE Int. Conf. on Robotics and Automation, p. 1603-
1609, 2007

5. Fratu, A., Fratu, M. (2011) Visual programming in Delphi
environment - with Application in Robotics. Second edition,
Transilvania University Press, ISBN 978-973-598-963-7

Received in January 2012

