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Abstract. The present paper generally relates to robots, more specifically to robots acting autonomously and requiring a 
safety method to avoid collisions with other objects as well as collision between one moveable segments of the robot. 
The authors have tested an avoid collisions method on complex simulation scenarios involving a virtual robot and have 
estimated collision-free actions. The virtual robot is able to react to avoid the obstacles while executing the robotic 
tasks. This was shown experimentally with a virtual system. This kind of robot’s behaviour simulation will be necessary 
in real applications, where interactions between robot and her environment are vital. 
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1. Introduction  

When a trajectory of a robot end-effector is 
controlled, a target state needs to be defined. The 
target state is, for example, defined by an object 
handled by a manipulating arm of a robot. In 
general, the position of the object can be described 
by three parameters. In addition to the object 
position, it is often necessary to describe a spatial 
orientation by Euler-angles for example,  

To carry out the movement of an end-effector 
of a robot, the trajectory is usually generated by 
mapping increments from a control parameter space 
as characteristic point, on a configuration space. In 
robotics, the characteristic point is often defined as 
a reference point of the end-effector. 

The control parameter space or task space is the 
space of the command elements. The control 
parameter space is composed of the command 
elements. The command (also “target” or “task”) 
elements are the elements of a respective command 
vector. These elements define a useful description 
about what should be controlled, for example, the 
position and the orientation of an end-effector. The 
configuration space is the space of controllable 
degrees of freedom. The configuration space can be 
composed of individual joints of a robot and/or 
more complex kinematics mechanisms having 
controllable degrees of freedom. 

Task coordinates refer to coordinates in which 
the movement of the effector is described. There are 
many ways to describe end-effector motions. 

To describe the positions of the effectors, the x, 
y and z elements of a position vector are commonly 
chosen. For spatial orientations, the task is often 
described in Euler angles or quaternions. In many 
cases, special descriptions for a task are used. 

Task space refers to the space that is described 
by the task coordinates. For example, if the hand 

position of a robot is controlled in x, y and z 
direction, the task space has a dimension of three 
and is described by these coordinates. 

Trajectory is a continuous path describing the 
motion of a system. The trajectory can describe the 
path of the individual joints or a path represented in 
the task coordinates. 

Conventionally, targets of robots were provided 
by operators and the robots simply tracked planned 
trajectories. The safety method in conventional 
robots is an emergency stop method that simply 
freezes motions of the actuators, if any motions 
were being performed.  

Modern robots, in particular anthropomorphic 
robots, are expected to work outside the typical 
environment such as factories. The modern robots 
need to interact with dynamic environment that is 
less predictable. Thus, there is a need for a more 
advanced safety method, hereinafter referred to as a 
collision avoidance method instead of the 
emergency stop method.  

The advantage of using the collision avoidance 
is not only safety. The collision avoidance does not 
necessarily stop the robot's target reaching motions 
and may expand the robot's working range. 

 
2. Collision avoidance methods 

The known collision avoidance methods may 
be divided into two categories. One category of 
collision avoidance method is a planning (non real-
time) method which generates trajectories taking 
obstacles into account.  

These methods are difficult to apply to 
interactive motions because the computation time 
becomes longer as the degrees of freedom of robots 
(e.g., anthropomorphic robots) increase. 

Another category of the collision avoidance is 
reactive (real-time) collision avoidance methods. 
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The reactive collision avoidance modifies 
trajectories that are quite simple such as line 
segments connecting current positions and target 
positions [1]. 

In order to use this method, the direction of 
avoidance and how to switch the priority between 
target reaching motions and collision avoidance 
motions must be decided depending on the 
magnitude of danger of collisions in real-time. For 
instance, if the distance between segments is large 
enough, target reaching motions should have higher 
priority than collision avoidance motions. 

 
2.1. Efficient collision avoidance technique 

The motion control of the robot includes a 
collision avoidance module designed for calculating 
the two closest points of different segments of the 
robot connected to each other via at least one joint 
or two closest points of a segment of the robot and 
another object. The collision avoidance module also 
controls the collision avoidance action only in the 
dimension along the line connecting between the 
two closest points. 

It is an objective of the present paper to provide 
an efficient collision avoidance technique for a 
robot which minimizes interferences with the task 
execution of the robot. 

In the strategy for controlling a robot, a target 
for a motion of the robot is defined. A motion 
control signal adapted for the robot reaching the 
target is calculated.  

A collision avoidance control signal based on 
the closest points of different segments of the robot 
connected to each other via at least one joint or a 
segment of the robot and another object is 
calculated. 

The influence of the motion control signal and 
the influence of the collision avoidance control 
signal are combined.  

The influence of the motion control output 
signal is higher when a calculated collision risk is 
lower. The influence of the collision avoidance 
control output signal is higher when the calculated 
collision risk is higher.  

The motion of the robot is controlled according 
to the combination of the signal’s influence. A soft 
task switching between target reaching by motion 
and collision avoidance is achieved by gradually 
changing the influence.  

The influence of the collision avoidance output 
signal remains zero as long as the distance between 
the closest points is larger than a preset avoidance 
threshold distance. 

The motion control module of the robot 
includes a collision avoidance module for 
calculating the two closest points of different 
segments of the robot connected to each other via at 
least one joint or a segment of the robot and another 
object.  

The motion control module also controls 
avoidance action only in the dimension along a line 
connecting between the two closest points.  

One characterization of the present paper also 
provides a computer program product embedded in 
a robot for implementing a motion control unit. 

The motion control unit includes, among 
others, a distance computing module, a motion 
control unit, a collision avoidance module, and a 
blending control unit. 

 
2.2. The distance computing module 

The distance computing module calculates the 
two closest points of different segments of the robot 
connected to each other via at least one joint or a 
segment of the robot and another object.  

The collision avoidance module is provided 
with an output signal from the distance computing 
module. The blending control unit combines the 
weighted output control signals of the motion 
control module and the collision avoidance control 
module. The weight of the motion control output 
signal is higher when a calculated collision risk is 
lower. The weight of the collision avoidance control 
output signal is higher when the calculated collision 
risk is higher. 

The method can be implemented on an 
anthropomorphic robot such as the robot presented 
in Figure 1. For first example, the authors have used 
a virtual serial robot, which manipulate a cubical 
object. The authors have created all bodies and 
connect them if desired with proper joints. 

For example, the 3DOF model is shown below 
integrated into 3D Cartesian space. Here, the multi-
body library provides three-dimensional mechanical 
components to model rigid multi-body robot 
system. The robot system is built by connecting 
blocks representing parts of the robot like link 
bodies, joints, actuators and gripper. 

In this section the authors will describe how to 
render a planning scenario in the form of constraints 
for the constraint-based planning framework. 

Assume that the geometry representing the 
robots and obstacles is given, as well as prescribed 
motion, simulated for the obstacles over time [2]. 
Informatics system then defines constraints that will 
restrict the motion of the robots to meet the design 
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specifications, and also guide the robots to complete 
the planning tasks such as the collision will be 
avoided. 

The simulation methodology uses a number of 
possible scenarios and involves some sequences of 
animation, as one can see in the Figure 1. 

 

 
 

Figure 1. Anthropomorphic robotic arm 
 
In Figure 1 is illustrated an anthropomorphic 

robotic arm having three segments where each 
segment comprises one or two spheres. 

The basic essence of this approach is to 
describe each rigid object in the planning scene as a 
dynamical system, which is characterized by its 
state variables (i.e. position, orientation, linear and 
angular velocity). In this framework, a robot arm 
can be a collection of rigid bodies, subject to the 
influence of various forces in the workspace, and 
restricted by various motion constraints.  

This transforms a motion planning problem 
into a problem of defining suitable constraints, and 
then simulating the rigid body dynamics of the 
scene with each constraint acting as a virtual force 
on the objects such as the collision will be avoided 
[3]. 

For this example, the authors use a virtual serial 
robot, which manipulate a virtual cubical object. 
The authors have created all bodies and connect 
them if desired with proper joints. 

Here, the multi-body library provides three-
dimensional mechanical components to model rigid 
multi-body robot system. The robot system is built 

by connecting blocks representing parts of the robot 
like link bodies, joints, actuators and gripper. 

The simulation methodology uses a number of 
possible scenarios and involves some sequences of 
animation, as one can see in the Figure 1. 

The dynamic simulation of multi-body systems 
becomes very interested when the robot manipulator 
must interact with the mobile objects, where the 
success will depend only on the capabilities of the 
robots. In this example, the self-collision detection 
is analyzed as well as test robot control algorithms 
[4]. 

Proposed scheme for dynamic simulation or 
animation, using the distance computation 
algorithm is an iterative process which continuously 
inserts and deletes the object pairs from a stack 
according to their approximate time to collision, as 
the objects move in a dynamic environment.  

Although many fast methods of animation have 
been proposed, few techniques are currently able to 
dynamically animate. 

The virtual system was implemented on a 
programming platform, using Delphi object-
oriented programming language [5]. 
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The Delphi source code for this application 
(only some procedures) is shown below. 

 
{$R *.dfm} 
procedure TForm1.TrackBar1Change(Sender: TObject); 
begin 
  glCylinder1.TurnAngle:=trackbar1.Position; 
  Valuex.Caption:='rotor1='+floattostr(trackbar1.Position); 
end; 
 
procedure TForm1.TrackBar2Change(Sender: TObject); 
begin 
  glCylinder2.TurnAngle:=trackbar2.Position; 
  Valuey.Caption:='rotor2='+floattostr(trackbar2.Position); 
end; 
 
  procedure TForm1.TrackBar3Change(Sender: TObject); 
begin 
  glCylinder3.TurnAngle:=trackbar3.Position; 
  Valuez.Caption:='rotor3='+floattostr(trackbar3.Position); 
end; 
 
  procedure TForm1.TrackBar4Change(Sender: TObject); 
begin 
  glCylinder4.TurnAngle:=trackbar4.Position; 
  Valuex2.Caption:='rotor4='+floattostr(trackbar4.Position); 
end; 
 
 procedure TForm1.TrackBar5Change(Sender: TObject); 
begin 
  pensa1.Position.Z:=trackbar5.Position/100; 
  pensa2.Position.Z:=-trackbar5.Position/100; 
  Valuecleste.Caption:='Cleste='+floattostr(trackbar5.Position); 
end; 
 
procedure TForm1.GLSceneViewer1MouseDown(Sender: TObject; 
  Button: TMouseButton; Shift: TShiftState; X, Y: Integer); 
begin 
soarece:=true; 
end; 
 
procedure TForm1.GLSceneViewer1MouseUp(Sender: TObject; 
  Button: TMouseButton; Shift: TShiftState; X, Y: Integer); 
begin 
soarece:=false; 
end; 
 
procedure TForm1.GLSceneViewer1MouseMove(Sender: TObject; 
  Shift: TShiftState; X, Y: Integer); 
begin 
  if(soarece)then 
  begin  
    if(x1-X<0)then 
      glcube1.TurnAngle:=glcube1.TurnAngle+2 
    else 
      glcube1.TurnAngle:=glcube1.TurnAngle-2; 
//glcamera1.MoveAroundTarget(x1-x,y1-y); 
    x1:=x; 
    y1:=y; 
  end; 
end. 

 
The strategy for dynamic simulation or 

animation, using the distance computation 
algorithm is an iterative process which continuously 
inserts and deletes the object pairs from a heap 
according to their approximate time to collision, as 
the objects move in a dynamic environment. The 
simulation method purely exploits the spatial 

arrangement of the two end-effectors without any 
other information. 

The end-effectors pair which has a small 
separation is likely to have an impact within the 
next few time instances, and those virtual pairs 
which are far apart from each other cannot possibly 
come to interfere with each other until certain time. 

For spatial tests to reduce the number of virtual 
pairs judicious comparisons, the authors assume 
that the environment is quite free and the end-
effectors move in such a way that the geometric 
coherence can be preserved, i.e. the assumption that 
the motion is essentially continuous in time domain. 

 
3. Conclusion  

This paper gives an application of the collision 
detection algorithm for a virtual system with a 
virtual robot. The authors have applied this 
algorithm to perform collision detection. This 
algorithm has been utilized in dynamic simulation 
as well as in a virtual environment. This application 
attests for the practicality of the algorithms and the 
importance of the problem natures. This algorithm 
and the distance computation method have been 
used in the dynamics simulator written in Delphi 
language.  

The essential performance of this dynamic 
simulator is the ability to simulate of small 
mechanical parts of a robot arm in real time. It 
reduces the frequency of the collision checks 
significantly and helps to speed up the calculations 
of the dynamic simulator considerably. 
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