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Abstract. Some enhanced methods for definition of the diagnosis problems as well as for the creation of logic-based 
qualitative description of dynamical industrial processes are developed in the presented paper. Specific techniques for 
application of causality graphs structures for enhanced Fault Diagnosis (FD) in dynamic industrial systems are also 
proposed. A specific diagnosis algorithm DIACAUSE as well as a particular causality graph structure were developed 
and respectively implemented for enhanced FD in a real industrial system for treatment of technologic liquids in a hot 
dip galvanizing plant. 
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1. Introduction 

The main techniques of the fault diagnosis (FD) 
procedures performed in industrial processes and 
systems are focused on the detection of abnormal 
systems/processes states, as well as on the 
determination of all principal faults and failures 
(that actually cause such types of perturbation in the 
process behavior and the systems states). 

In compliance with the FD terminology, such 
types of diagnostic procedures are respectively 
called “fault detection” and “fault isolation” [1, 3, 
5, 9]. 

Most of the diagnosis methods with a practical 
application are based on specific analytical models 
of the monitored process [2, 6, 10].  

The general form of such models is as follows 

( ) ( )auxgauxf ,,,,, == yx , (1) 

where “x”, and “y” are respectively the input and 
output vectors that define the systems states. 

The principal faults in the analytical models are 
basically defined by the changes occurred in the 
parametric vector “a”. Therefore the diagnosis 
problems may be analyzed and respectively solved 
via application of estimation methods and/or state 
observers [6, 8, 11].  

However, during the application of analytical 
models, the generated fault(s) may cause some of 
the following issues: 
a) the systems and/or process fault(s) may generate 

structural perturbation in the diagnosed process 
which cannot be adequately described by the 
specific changes occurred in the parametric 
vector “a” (for example a pipeline containing 
some industrial liquids could be broken, and/or a 
valve in a hydraulic systems could be blocked, 
etc.); 

b) in some situations, the needed diagnostic 
information (and especially the information 
obtained “on-line”), might not be adequately 
expressed just by using the quantitative 
measurements performed on the model output 
“y”, since a qualitative decision or some 
particular type of alarm message (for example 
“the liquid level in tank 3 is low”), should be 
used for the purpose. This in fact means, that the 
developed analytical diagnostic models could 
not (in fact) be applied for processing such of 
kind of information; 

c) generally, it is not possible to develop an 
adequate analytical diagnostic model like the 
one, presented in (1). 
The presence of all these specific issues means, 

that in such situations the diagnostic problems 
might be solved via application of some specific 
knowledge describing the discrete cause-effect 
relations, (that occur in the process under 
consideration), and not via analytical models, i.e., 
some particular knowledge-based systems should be 
developed and applied for the purpose [7, 12].  

This fact means also, that some particular 
diagnostic systems based on artificial intelligence 
(e.g., neural networks, fuzzy-neural modules, causal 
graphs structures etc.), should be developed and 
applied for performing FD in the real industrial 
systems [5, 7, 8, 9]. 

However, a general issue for all knowledge-
based systems (applied for FD in the real-time 
dynamic processes), remains the extensive search 
spaces that should be processed. Therefore, some 
particular knowledge-processing methods that 
utilize specific features of the diagnosed systems 
must be developed and applied in order to restrict 
the search space and respectively to accelerate the 
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performances of the diagnostic algorithms [7, 8, 9]. 
The results obtained from specific studies [6, 

7], showed that the clear logic description of the 
cause-effect relations (that became effective once a 
fault occurrence is realized), are actually more 
advanced and able to develop a much more detailed 
description of the process than the classical event 
trees (e.g., fault trees) and logic tables developed 
under the FMECA analysis [3, 5, 7, 8].  

The causal graph structure developed for a 
dynamical industrial system may be used to restrict 
the search space, in order that the developed 
diagnostic algorithms can become more fit and 
ready to be implemented under real time constraints 
[6, 7, 8]. 

Some enhanced methods for definition of the 
diagnosis problems as well as for the creation of 
logic-based qualitative description of dynamical 
industrial processes are developed in this paper. 
Specific techniques for the application of causality 
graphs structures for enhanced Fault Diagnosis (FD) 
in dynamic industrial systems are also proposed. 

 
2. Definition of diagnosis problems and 

creation of a logic-based qualitative 
description of the industrial processes 

2.1. Definition of the diagnosis problems 
The essence of this study is to create methods 

and techniques for monitoring of a typical diagnosis 
situation (during process supervision), where the 
fault occurrence should be indicated via alarm 
messages and the fault isolation problems should 
also be solved (adequately).  

The core of the diagnostic problem includes 
location and isolation of the primary (i.e., the 
general) faults, which generate deviations in the 
process signals that can be used for the creation of 
specific sets of alarms.  

The general constraint for this particular case 
is, that since the faults and the alarm messages are 
discrete events, then the process should also be 
described under discrete form (regardless of the fact 
that the real process might be continuous).  

For the same reasons, all control actions and 
general operating conditions should also be 
described under the same terms, please see Figure 1. 

The set of all fault symptoms is described via 
the set {Si}. Therefore, all kinds of alarm messages 
Ai, control actions Ui, faults Fi, and operational 
conditions Zi represent particular subsets of the set 
{ Si}, i.e.,  

{ } { }iiiii SZFUA ∈,,, , (2) 

Supervised
PROCESS

State Zi
Control
Actions

Ui

Alarm
Messages

A i

Fi Fault/Failure

Supervised
PROCESS

State Zi
Control
Actions

Ui

Alarm
Messages

A i

Fi Fault/Failure

 
Figure 1. Dynamic process with generated faults/failures 

 
It is also assumed that the current operational 

conditions Zi and all control activities Ui, that have 
been developed in the supervised process before the 
fault occurrence are known.  

In a case of a fault occurrence, the process 
signals (generally) change very dynamically and 
therefore may be used for generation of alarm 
messages Ai.  

Then, the refined core of the diagnosis problem 
for the present case is, that for a given set of control 
actions {Ui} and process states {Zi}, a particular 
fault set {Fi}, for which the process is capable to 
generate specific sets of alarm messages {Ai}, must 
be determined. 

 
2.2. Logic-based qualitative description of the 

dynamical industrial processes – models and 
cause-effect relations 

A particular model of a logic-based process 
description must be developed and respectively 
used in the FD procedures. The model (that has to 
be developed) should be able to describe some 
eventual qualitative events which may occur in the 
behavior of the dynamical industrial process. These 
qualitative events are generally characterized by 
their representative signals (or respectively by the 
process parameters values), which must either 
exceed the preliminary defined restrictions or 
remain within the prescribed intervals. 

If such type of qualitative events do occur, then 
some specific (representative) symptoms Si, could 
be created.  

In fact, it is always possible that some kind of a 
direct (i.e., a straight) statement may be assigned to 
each specific symptom. The validity of the so-
created reasoning can be defined by the specific 
categories “true” and “false”. 

The general cause-effect relations (used for the 
purpose), usually have the following form 

{ }mkji SSSS −∩∩−∩∩∩← LLS , (3) 

where the right-hand side of the relation (3) 
describes the set of specific symptoms, whose 
simultaneous realization causes the occurrence of 
the generalized symptom S.  
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If four different sets of symptoms (respectively 
SA, SB, SC and SD) can be created, then the cause-
effect relations may be developed as follows 

CBA SSS ∩← , (4) 
 

DA SS ← . (5) 

The reasoning obtained by these relations is, 
that the symptom SA is either a particular effect of 
the appearance of symptom SD, either an effect of 
the simultaneous appearance of the symptoms SB 
and SC. 

Therefore, the cause–effect relations may be 
generalized and respectively be interpreted via the 
following equivalent relation, 

( ) DCBA SSSS ∪∩↔ , (6) 

Then, the logical description ML of the 
generalized cause – effect model may be developed 
as follows 

ML = ML
G + ML

CE, (7) 

where: 
ML

G represents the general relations, describing the 
current control actions Ui, (that are supposed to 
be known) and/or the process states Zi (that are 
also supposed to be known); 

ML
CE – represents the developed cause-effect 
relations. 

Respectively, the alarm sets Ai and the fault 
sets Fi might also be developed under the 
representative form (3). 

 
3. Specific properties of the causality graphs 

developed and applied for Fault Diagnosis 
(FD) in dynamic systems 

The general features of the causality graphs, 
defined via allegation logic were first introduced in 
[7]. 

If the causality graph should be developed and 
applied for Fault Diagnosis (FD) in dynamic 
industrial systems, then it should possess the 
following specific properties: 

• for every specific diagnosis symptom Si, there 
exists a corresponding peak in the causality 
graph, i.e., each peak (in the graph) can be 
expressed by the specific symptom symbol Si; 

• for every existing cause-effect relation (of the 

type ji SS → ), there exists a corresponding 

arrow with direction from “i” towards “j”; 
• directed arrows in the graph structure do exist if  

there is a general relation between the models 
components (of the modelled structure) ML

G; 

• the peaks of the causal graphs must also be 
associated with the general relations describing 
the symptom occurrences; 

• each fault event Fi must generate a corresponding 
alarm message Ai, in cases when there is a 
corresponding path (in the causality graph), 
which reflects such relation; 

• in cases, when there is a particular path (in the 
developed graphs structure) from some node 
(i.e., a peak) Si towards another node Sj, and the 
path is represented by the nodes (Sk, Sl, …, Sm, 
Sn) then, the symptoms (corresponding to these 
nodes) occur exactly in the same order, if the 
cause-effect relations among these (described 
by the paths) became really effective. 
 

4. Development and application of the 
causality graphs structure and cause-effect 
model for enhanced FD in industrial 
system 

4.1. General characteristics of industrial system 
for treatment of technologic liquids in a hot 
dip zinc galvanizing plant 

The created causality graphs and cause-effect 
models shall be applied for enhanced Fault Diagnosis 
(FD) in an industrial Hot Dip Zinc Galvanizing 
system. The systems modules that are subjected to 
FD procedures represent special technologic tanks 
containing the technologic liquids, necessary for the 
treatment of the so-called “black steel” products, 
prior to the hot dip zinc galvanizing process. All 
necessary details, related to the hot dip galvanizing 
modules, technologic and logistics processes and 
systems components are presented in [4].  

The general structure of the industrial system 
composed of three hydraulic tanks that contain the 
necessary technologic liquids (acids, and alkalis), is 
presented in Figure 2. The system consists of three 
technologic tanks with big volume (about 50 – 60 
m3), which contain the technologic flux liquids. 
Two of these tanks (Tank 2 and Tank 3 
respectively), are designated for treatment of the 
“black steel” products in a flux bath. 

The purpose of Tank 1 is to be a compensation 
tank, i.e., designated to compensate the waste 
liquids that should be processed in a specific waste 
liquids treatment system (situated in another part of 
the facility). 

The level control loops (which operate the 
valves and the pumps), ensure that the control of 
liquids level can be effectuated independently for 
each tank (depending on the consumed quantities of 
liquids). 

 
 
 



RECENT, Vol. 13, no. 3(36), November, 2012 

270 

 

 

Compensation
Tank 1

A1

F1

Flux
Tank 2

A2

F2

Flux
Tank 3

A3

F3

Overflow

Waste Liquids
Treatment

Waste Liquids
Treatment

Compensation
Tank 1

A1

F1

Flux
Tank 2

A2

F2

Flux
Tank 3

A3

F3

Overflow

Waste Liquids
Treatment

Waste Liquids
Treatment

 
Figure 2. General structure of an industrial system for technologic liquids 

 
4.2. Development of the diagnosis algorithm 

applied for FD in the industrial system 
The structure of the developed diagnosis 

algorithm “DIACAUSE ” is presented in Figure 3. 
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Figure 3. Structure of the diagnosis algorithm 

“DIACAUSE” 
 

The diagnosis process is described by the 
modeling relations (7), and a specially developed 
causality graph. The diagnosis algorithm should be 
able to define the particular fault sets for a given 
(generated) set of alarm messages. 

The diagnosis algorithm consists of two parts – 
developed respectively as “Stage1. Preparation” 
and “Stage 2. Realization”, please see Figure 3.  

Stage 1 of the DIACAUSE-algorithm is 
developed as a model preparation phase. This part 
of the algorithm should be accomplished prior to the 
generation of the first alarm message A1. 

During this first stage of the DIACAUSE-
algorithm, the structure of the causality graph must 

be developed and the corresponding process model 
under form (7) must be created. Another feature of 
Stage 1 is, that it also includes the graph searching 
techniques, that must be realized prior to the 
occurrence of the first alarm event. 

Stage 2 of the DIACAUSE-algorithm is 
developed as a realization phase and respectively 
defines the solution of the actual diagnosis problem, 
once the alarm sets are generated.  

This part of the algorithmic structure consists 
of two interconnected sub-parts. The upper level 
part of the algorithmic structure (developed in Stage 
2), includes some specific decomposition 
techniques that are used to divide (i.e., to 
decompose) the complex diagnostic problems into 
more simple and easy solvable sub-problems, 
(which in their turn are related to the respective 
properties of the already created diagnostic model).  

The solution of these groups of sub-problems 
finally results onto a diagnostic decision, which 
determines adequately the reason of the fault/failure 
occurrence events. 

 
4.3. Development of the causality graph 

structure and its application for enhanced FD 
under real operation conditions 

The structure of a causality graph designated 
for enhanced FD in a real industrial system for 
treatment of technologic liquids in hot dip zinc 
galvanizing facility is developed and respectively 
presented in Figure 4. 

The causality graph structure provides the 
necessary knowledge regarding the systems faults – 
Fi, the alarm messages - A i, the systems states - Zi, 
and the diagnosis symptoms - Si. 
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Figure 4. Structure of the causality graph  
applied for FD under real operation conditions 
 
The characteristics of the causal graph and the 

applied model may be defined as follows. 
1. Alarm messages, generated on the systems 

output: 
• A1 : Level of Compensation Tank 1 is low. 
• A2 : Level of Flux Tank 2 is low. 
• A3 : Level of Flux Tank 3 is low. 

2. Faults, that must be considered: 
• F1: Valve 1 is closed and blocked. 
• F2: Valve 2 is opened and blocked. 
• F3: Connection pipeline from Tank 1 to 

Tank 2 is blocked. 
3. Qualitative states of the diagnosed process: 

• Z1: The liquid level of Flux Tank 3 is low. 
• Z2: The liquid level of Flux Tank 3 is 

medium. 
• Z3: The liquid level of Flux tank 3 is high.  

4. Diagnostic symptoms, that must be considered: 
• S1: Level of Compensation Tank 1 is below 

limit. 
• S2 : Level of Flux Tank 2 is below limit. 
• S3: Level of Flux Tank 3 is below limit. 
The model of the system may now be 

developed under form (7). 
The model of the general relations ML

G(S) may 
be developed for all specific system states, under 
the following form 

ML
G (S) = Z1 ∪ Z2 ∪ Z3, (8) 

The cause-effect model ML
CE(S) for the 

industrial system may be developed as follows: 

ML
CE(S) = {[F1→ S1], [S1→ A1], [F2→ S2], 

[S2→ A2], [(S1∩ S2)→ S3], [(S2∩ F3) → S3], 

[S3→ A3], [(S1∪ S2) ∩ (Z1 ∪ Z2)] → S3} 

(9) 

Then, the following sets of logical relations can 

be obtained from the already developed cause-effect 
relations 

F1 ↔ S1, (10) 
 

S1 ↔ A1, (11) 
 

F2 ↔ S2, (12) 
 

S2 ↔ A2, (13) 
 

{[S1∩ S2] ∪ [S2∩ F3] ∪ [(S1∪ S2) ∩  

∩ (Z1 ∪ Z2)]} ↔ S3, 
(14) 

 

S3 ↔ A3. (15) 

The diagnosis algorithm DIACAUSE may now 
be realized on the basis of the already developed 
causality graph, i.e.,  
A) The solution of the first sub-problem includes 

the replacement of the statement A3, by another 
statement of the S3 type. Since A3 represents a 
peak in the graph structure, and the only path 
towards this peak lies from the peak S3, then, this 
is in fact the solution to this particular sub-
problem (i.e., the replacement of the alarm 
message A3 by the symptom S3).  

Thus, the new statement should be: 
A1∩ S3∩ A2.  

 
B) The solution of the next sub-problem includes 

the replacement of the symptom S3 by another 
type of statement based on the symptoms S1 and 
S2, on the states Z1, Z2 and Z3, and on the fault F3. 

Therefore the newly developed statement 
should be: S1∩ Z1 ∩ Z2∩ Z3∩ S2∩ A2. 

 
C) On this stage of the diagnosis algorithm, three 

particular sub-problems must be solved at the 
same time, i.e., 

• the statement Z1∩ Z2∩ Z3 must be solved; 
• the term A2 must be replaced by a term, which 

includes S2; 
• the term A1 must be replaced by a term, which 

includes S1. 
Therefore, the resulting statement is: S2∩ S1. 
 

D) The symptom S2 must be replaced by a 
particular relation, which includes the fault F2. 

 
E) The symptom S1 must be replaced by a particular 

relation, which includes the fault F1. 
 
F) The generated final statement is: F2∩ F1. This in 

fact means that the single fault F1 has caused the 
alarm messages. 
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5. Conclusions 
5.1. Some particular methods and techniques 

applied for definition of the diagnosis problem as 
well as for creation of a logic-based qualitative 
description of the dynamical industrial processes 
are developed in this paper. 

5.2. Some types of enhanced techniques for 
implementation of the causality graph structure for 
Fault Diagnosis (FD) in dynamic industrial 
systems (i.e., under real operating conditions) are 
also proposed.  

5.3. A particular diagnosis algorithm named 
DIACAUSE, a causality graph structure and a 
system model are developed and respectively 
applied for enhanced FD in a real industrial system 
for treatment of technologic liquids in a hot dip 
zinc galvanizing facility. 
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