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Abstract. A worldwide trend in the development of power syss is to build interconnections with the goal ¢biave
economical benefits. Interconnections of poweresyst may offer significant technical, economical andironmental
advantages. A modern power system consists ofge laumber of Thermal and Hydal Power plants comaeet
various load centers through a transmission netwankimportant objective in the operation of suchaaver system is
to generate and transmit power to meet the systeih dlemand at minimum fuel cost by an optimal nfixarious
types of plant. In this paper Kirchmayer's methsdised for hydrothermal scheduling which is a catiseal method
and slow. In order to overcome the disadvantagéhénKirchmayer's method, Back Propagation Neuratwdek
(BPNN) is proposed for scheduling of Hydro-Thermsgstem. The result shows the effectiveness of tiopgsed
method compared to the conventional in terms oéd@nd accuracy.
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1. Introduction being given, the optimal hourly schedule can be
A modern power system consists of a largeprepared that minimizes a desired objective while
number of interconnections. The main advantagesneeting system constraints successfully.
of interconnection of different power generating  Cost optimization of hydro stations can be
stations is to decrease the per unit cost of éattr achieved by assuming the water heads constants and
energy [1], decrease the reserve capacity and teonverting the incremental water (i.e. fuel) rate
provide continuity of electrical energy to the characteristics in to incremental fuel cost curgs
customers. The study of the problem of optimummultiplying it with cost of water per cubic meter
scheduling [2] of power generation at various @ant and applying the conventional technique of
in a power system is of paramount importanceminimizing the cost function.
particularly where the Hydel sources are scarce and Different methods have been proposed for the
high cost of thermal generation has to be reliedsolution of these problems in the past. Variational
upon to meet the power demand. The Hydelmethods, Pontryagin maximum principle, General
resources being extremely limited, the worth ofmathematical programming and the Dynamic
water is greatly increased. If optimum use is madgrogramming have been used to solve the problem
of their limited resource in conjunction with the in different formulations. Methods based on
thermal sources, huge saving in fuel and thd-agrangian multiplier and gradient search
associated cost can be made. techniques for finding the most economical
The long range scheduling [3] (generally hydrothermal generation schedule under practical
persisting from months to year) involves mainly theconstraints have been well documented. Kirchmayer
scheduling of water release. Long range schedulin{f] utilized calculus of variation for short range
also involves metrological and statistical analysisscheduling problem and proposed the well known
[4, 5, 6]. The benefit of this scheduling is to sav coordination equations. But this Kirchmayer’'s
the cost of generation, in addition to meeting themethod is too slow and case sensitive method so a
agricultural and irrigational requirements. Long Soft computing method is proposed in this paper
range scheduling involves optimization of the using Back propagation neural network [10].
operating policy in the context of major unknowns
such as load, hydroelectric inflows, unit availapil 2. Optimal scheduling of power plants
etc. The short range problem [7, 8] usually has an  Scheduling is nothing but sharing the total load
optimization interval of a day or a week. This and losses among the available Generators. Equal
period is normally divided in to sub-intervals for load sharing is nothing but sharing the load among
scheduled purposes. Here, the load, water inflowshe available generators equally. Optimal load
and unit availabilities are assumes to be known. Ascheduling is nothing but sharing the load among
set of starting conditions (i.e. reservoirs levels)the available generators in cost effective manner.
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The main aim in the economic dispatch 3.1. Short term hydrothermal scheduling
problem is to minimize the total cost of generating In it, the load demand on the power system
real power at various stations while satisfying theexhibits cyclic variation over a day or a week and
loads and losses in the transmission line. the scheduling interval is either a day or a week.

Optimal load scheduling can be determinedthe scheduling interval of short range problem is
using different methods and it can also besmall, the solution of the short-range problem can
determined using Optimal Power Flow (OPF)assume the head to be fairly constant. The amount
methods. The solution of the OPF will lead toof water to be utlized for the short-range
economic operation of the power plant and yield arscheduling problem is known from the solution of
economic dispatch of real power generation. the long-range scheduling problem.

For the planner and operator fixed generation  Short-range hydro-scheduling (one day to one
corresponds to a snapshot only. Planning angveek) involves the hour-by-hour scheduling of all
operating requirements very often ask for angeneration on a system to achieve minimum
adjustment of the generated powers according t@roduction cost for the given time period. In sach
certain criteria. One of the obvious ones is thescheduling problem, the load, hydraulic inflows,
minimum of the generating cost. The application ofang nit availabilities are assumed known. A set of

such a criterion immediately assumes variable inp“&tarting conditions (e.g. reservoir levels) is give

powers and bus voltages which have 10 b& . ihe optimal hourly schedule that minimizes a

determined in such a way that a minimum of theyoireq objective, while meeting hydraulic steam,
cost of generating these powers is achieved. : . .
and electric system constraints, is sought.

Part of the hydraulic constraints may involve
Ontimal scheduli ¢ lant i meeting “end-point” conditions at the end of the
s th p(ljm? sC et'u mgfothpower pe;ﬂ g(?nera lon scheduling interval in order to conform to a long-
IS the determination ot the generation for everyrange, water-release schedule previously establishe
generating unit such that the total system gerwrati The short term hydrothermal scheduling

cost is minimum while satisfying the system - PP .
: o problem is classified in to two groups:
constraints. The objective of the hydrothermal™, Fixed head Hydro-Thermal scheduling:

scheduling problem is to determine the water Variable head Hvdro-Thermal schedulin
releases from each reservoir of the hydro system at y 9
each stage such that the operation cost is mintiize, Kirchmayer's method

along the planning period. In this method, equivalent cost of water (used
The operation cost includes fuel costs for theg, hower generation in hydro stations) is used. Le

thermal units, import costs from neighboring -
systems and penalties for load shedding. The bas}(r:]ere bex thermal power stations and £ a) hydro

guestion in hydro thermal coordination is to find g POWer stations Ina power system. I;gtbe the
. . . . equivalent cost in rupees of one cubic meter of
trade-off between a relative gain associated with . :
. . . : ater and bev; the water used in cubic meters per
immediate hydro generation and the expectation o N :
: . our for power generation ji' hydro station. Let;
future benefits coming from storage.

. be the cost of power generation is Rs./houi"in
Two aspects m.ake the hydrothermal SCheclu“”%hermal power station. Then the total cost of power
a complex problem:

» The uncertainty of inflows; generation would be

3. Hydrothermal scheduling

i . a n vy i [Rs
« The hydraulic coupling between hydro plants. c=Yg+ Y 17 (1)
The operation planning of hydrothermal izl  j=a+l hr
systems is called Hydro-Thermal Co-ordination In this method. the total co€ is minimized

(HTC) [11+16] problem. This problem requires g piect to the following equality constraint.
solving for the thermal unit commitments and Load demand

generation dispatch as well as the hydro schedules. o n

The objective is to minimize thermal production Po=>Pi+ > Pyj —PL, 2)
cost subject to meeting the forecasted demand and [ j=a+1
other operating constraints. Also the HTC problemwhere P;; - power generated b'S}‘ thermal power
determines the thermal unit commitments andstation;PHj - power generated bh?“ hydro power
generation dispatch, as well as the hydro schedulestation:P, - transmission loss.
to meet the forecasted demand and other operating The optimal operating state is determined by
constraints at minimum thermal production cost.  the Lagrangian method as follows.
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The augmented cost function is

c*=c—|amd{§ai+ Zn:PHj—PLJ, ®3)

i j=a+l
whereC’ is the Lagrangian multiplier an@ is as
given by equation for optimality

a—C:O, i:12,3'...’a
0P

oC .

— =0, =a+1---,n
g 0 1=t

Carrying out the differentiation of equation (3)
results in

dg.

+lamd dR

J J

=lamda i=12---,0 (4)

d
yj[-lﬂﬂamd@dizlamda j=0+l--,n (5)
dRy dRy

5. Back propagation neural network

Back Propagation is aystematic method for
training multilayer artificial networks. It is a
multilayer forward network using extend gradient-
descent based delta-learning rule, commonly known
as back propagation rule. Back propagation
provides a computationally efficient method for
changing the weights in a feed forward network,
with differential activation function units, to leaa
training set of input-output examples. Being a
gradient descent method it minimizes the total
squared error of the output computed by net. The
network is trained by supervised learning method.
The aim of this network is to train the net to asei
a balance between the ability to respond corrdotly
the input patterns that are used for training dored t
ability to provide good responses to the input that
are similar.

Solution of equation yields the economically 5.1. Back propagation algorithm

optimum thermal and hydro power generations.

Initialization of the weights

If transmission loss is neglected, the equationStepl: Initialize weights to small random values.

reduces to
. dw;
d_Clzyj [_)_]:|amda (6)
dR;i dRy;
4.1. Algorithm

Stepl: Read the input da@ W, v, B-coefficient,
where:C; - fuel cost equatiorii - water used in
cubic meters per houry - equivalent cost in
rupees of one cubic meter of water.

Step2: Calculate the cost of power generation

a noy; W; [Rs
c=3C+ ¥ 21— h:
i=1 j=a+l

whereC; is the cost of generation.

Step2: While stopping condition is false do Steps
3-10.

Step3: For each training pair do steps 4-9.

Feed Forward

Step4:Each hidden unit receives the input sigkal
and transmits the signals to all units in the layer
above i.e. hidden units.

Step5: Each hidden unit sums its weighted input
signals

n
Z_inj =Voj+ Z:l(xi A\ ) (8)

applying activation function for to get output

Zi=f (Z—inj ) 9)

Step3: The main objective is to minimize the cdst o SteP6: Each output unit sums its weighted input

generation. Objective function for minimizing the

aT
total cost of generation is given by, jCi dt.
i=1j
Step4: Read the load demaifdty.

Step5: The optimal operating state is determined

using equation (3).

signals
p
Yinj =Wok + Z(Zj w'ij)’ (10)
=
and apply activation function to calculate output
Yie = £ (Vi ). (11)
Back Propagation of errors

Step6: Differentiate the above function results inStep7: Each output unit receives a target pattern

equations (4) and (5).

corresponding to an input pattern, error

Step7: By using the load balance equation form information term is calculated as

another equation
I:)Ti + I:)GH = I:)Ioad + Ploss (7)
Step8: By solving equations (4), (5) and (7), abtai
the Py, Py values.
Step9: Calculate operating cost of the total system
Stepl10: Display the results.

D = (t = vie) OF (Yeini) (12)
Step8: Each hidden unit sums its delta from umits i
the layer above

m
O_inj =kZ5j Wi (13)
=]
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The error information term is calculated as to be trained. The proposed neural network is as
8; =8_iny F (Z—inj ) (14) shown in Figure 1.
Updation of the Weights Input Layer Hidden Layer Output Layer
Step9: Each unit updates its bias and weights. Vi1 |
The weight correction term is given by Pload Pgt
Aij = alpha[ék [ZJ ) (15)
and the bias correction term is given by
AW, = alphald , (16)
Therefore Ploss Peh

ij (neV\) =ij (Old) + Aij ,
Wk (new) =Wy (old) + AWy

Each hidden unit updates its bias and weights.
The weight correction term is given by

17)

AV =alphald; [X;, (18)
and the bias correction term is given by
AVOk = a|pha|:6J , (19) _ Bias Neuron -
) . ) Figure 1. Proposed Back Propagation Neural Network
The weights between input and hidden layer
can be updated as follows The above network is trained by using 150
Vi (new =Vj; (old)+ AV, training patterns and it takes 129.01198 sec timne f
Voj (new) = Vy; (old) + AV, (20)  training. It has taken 11976 iterations to traifteA

training, load demand and power loss if given as
inputs with in very less time as compared to
Kirchmayer's method it will give the results. While

5.3. Merits of Back Propagation Algorithm training the graph between error and number of
* The mathematical formula present here, can bgerations is as shown in Figure 2.

applied to any network and does not require any
special mention of the features of the function to Graph between Enrar v terations
be learnt. 10 ——
» The computing is reduced if the weights choser
are small at the beginning.
« The batch update of weights, which provides a ¢ ]
smoothing effect on the weight correction terms.

Stepl0: Test stopping condition.

Error
[
1

5.4. Proposed Neural Network

The neural network proposed will have two
input neurons, two middle layer neurons, two output
neurons and one bias neuron. The inputs for thh 5} ]
neural network are load demand and loss. Tht
outputs are Thermal and Hydal power generations
The network is trained with Back Propagation 0——— " 7" w @ o
Algorithm using Gradient Descent method. herations

In the proposed method the output of each Figure 2. Graph between Error and number of itenati
neuron can be determined using sigmoid activation
function. Error will be calculated between expectedg. Results

output and actual output. Error is back propagated  The following table shows how the load is

and weights are adjusted in such a way that actugcheduled between Thermal and Hydal power plants
value move towards the expected value, means errjith Kirchmayer's method and proposed method,
is back propagated until the actual output is etpial when different loads are applied and it is observed

desired output. In the process if actual outpetiisal  from the table the effectiveness of proposed
to the desired output then the neural network i sa method.
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Table 1. Comparison Table

: , Back Propagation Neural Network
Inputs Kirchmayer's method Training Time = 129.01198 s
Load Losses Hydro Thermal | Execution Hydro Thermal | Execution
Demand Power Power Time, [s] Power Power Time, [s]
0.1 0.054575 | 0.092921 | 0.010204 | 0.13329 0.0906635 0.0129615 0.03207
0.146667 | 0.083089 | 0.1369 0.020132 | 0.135709 | 0.125876 | 0.0217131 0.032798
0.3 0.191294 | 0.283815 | 0.08053 0.134908 | 0.28055 0.0823413 0.033804
0.366667 | 0.245491 | 0.348919 | 0.120243 | 0.131658 | 0.352249 | 0.124018 | 0.032201
0.426667 | 0.298083 | 0.408104 | 0.163541 | 0.132977 | 0.413756 | 0.167547 | 0.032788
0.48 0.348031 | 0.461188 | 0.208494 | 0.132611 | 0.465918 | 0.210423 | 0.033111
0.7 0.586347 | 0.686347 | 0.460838 | 0.13626 0.68198 0.451874 | 0.03018
0.78 0.686432 | 0.76763 0.581633 | 0.134275 | 0.771155 | 0.586198 | 0.032486
0.88 0.821924 | 0.87257 0.768064 | 0.133662 | 0.879087 | 0.77866 0.032057

7. Conclusion

given load by using conventional method i.e.q
Kirchmayer's method and Back Propagation Neural
Network method.
Kirchmayer's method is too slow than Back 10-
Propagation Neural
BPNN gives fast and accurate

c

work may be extended using Radial Basis Function

Hydro thermal scheduling is determined for the

The results shows that

Network (BPNN) method.

ompared to Kirchmayer's method. In future this

neural network.
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