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Abstract. This article discusses problems of the accuracy of the axes position of objects accomplishing rotary motion. 

Different schemes to estimate the errant run-out of the axes and faces of object tables are proposed, as well as their 

capabilities are estimated. 
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1. Introduction  
Constancy of the rotational axis is a basic 

requirement towards the objects, accomplishing 

accurate rotational movement (such as rotary tables 

of roundness measuring machines, rotary modules of 

measuring systems and production machines, etc.). 

This volatility is estimated by the so called 

Errant run-out (radial, axial and angular). 

The errant radial run-out (Δrbb) is defined as 

volatility of the position of a point from the 

instantaneous axes of rotation relative to a virtual 

reference axis in a plane perpendicular to that axis. 

The errant axial run-out (Δabb) is defined as 

volatility of the position of points from the 

instantaneous axes of rotation relative to a plane, 

which is perpendicular to the virtual reference axis. 

The errant angular run-out (Δabb) is defined 

as volatility of the angular position of the 

instantaneous axis of rotation relative to the virtual 

reference axis. 

The virtual reference axis is a straight line in a 

xyz coordinate system, passing through the 

centroids of the points of the instantaneous axis of 

rotation in two distant parallel planes xy [2]. The 

axis of rotation is oriented along the axis Z. 

A centroid is a point with coordinates, which 

are arithmetic mean values of the coordinates of the 

points relative to which it is determined 

The errant run-out in a given plane or direction 

should be considered as the locus of instantaneous 

axes of rotation of the object and accordingly 

represents a complex closed curve or a set of points, 

positioned along the line of measurement (Figure 1, 

a and b). 

The errant run-out can be quantitatively estimated 

through the size of the available area, or through the 

magnitude of the deviation from the virtual datum, or 

through the instant positions of the instantaneous 

axes relative to the virtual reference axis. 

For example, the errant radial run-out can be 

estimated by the diameter D of the circle described 

around the curve (Figure 1a), or through the instant 

deviations Δi relative to the centroid, or through the 

spread of these deviations 
minmax ii  . 

It should be noted that the diameter of the 

enveloping circle D is affected by extreme 

deviations 
extri  and is not sufficiently informative, 

which greatly limits its use. 
 

     
                 a)                                              b) 
 

 
c) 

Figure 1. The errant run-out in a given plane or direction 

 

The errant axial run-out is evaluated by the 

instant positions of the instantaneous axes of 

rotation relative to their centroid, or the spread of 

this position in the direction of the virtual reference 

axis (the axis z) (Figure 1b). 

The errant angular run-out is measured by the 

angle i, which ith instantaneous axis of rotation 

makes with the virtual reference axis, or by the 

magnitude of these angles (
minmax ii  ) (Figure 1c). 

The position of the instantaneous axis of 

rotation, or respectively the angle i is a function of 

the angle of rotation i of the object around the 

virtual datum axis. 
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All three types of errant run-out have their 

systematic and random component, which can be 

evaluated by repeated measurement and by a 

corresponding statistical processing of the 

measurement results. 

 

2. Schemes of measurement - description, 

nature and comparative analysis 
2.1. Scheme No. 1 

This scheme is often used in the metrological 

practice to determine the errant radial and axial run-

out. But the methodology included herein below 

makes it is possible to measure also the errant 

angular run-out. 

The procedure involves the measurement of 

both the radial and axial run-out of a reference glass 

hemisphere, located on the top of the turntable of 

the object under test (Figure 2, a and b), by means of 

two measuring heads (MH), as well as by subsequent 

processing of this primary information [4]. 

 

a) 

b) 

c) 

Figure 2. The measurement of both the radial and axial 

run-out of a reference glass hemisphere 

In the general case, the radial run-out includes 

the following components: 

 The deviation from roundness of the measured 

profile section (EFK); 

 The eccentricity of the center of the associated 

circle of the measured profile (e); 

 The errant run-out in a radial direction (errant 

radial run-out – Δrbb). 

The axial run-out includes the following 

components: 

 The deviation from flatness of the measured 

profile EFE of the axial surface at a given radius; 

 Deviation from perpendicularity EPR of the 

associated plane of the measured at a given 

radius profile relative to the axis of rotation;  

 Errant axial run-out Δabb (inconstancy of the axial 

position of the work-piece during its rotational 

movement); 

 A component related to the parallelism EPA of the 

instantaneous axes of rotation, respectively the 

parallel misalignment of the perpendicular to 

them planes, which serve as a starting instant 

datum - i.e. a component associated with the 

angular errant run-out. 

In case a standard sphere is used, the 

component associated with its own shape deviation, 

can be ignored and then the errant run-out occurs 

(results in) as the roundness deviation of the 

measurements hemisphere profile. The errant radial 

run-out on the graphs showing the results of the 

measured radial run-out is expressed as the 

roundness deviation relative to the least squares 

associated (LSQ) circle, whose center is the 

centroid of the examined (obtained) values, Figure 

3. The errant radial run-out is equal to the roundness 

deviation of the measured profile Δi. 

 

 
Figure 3. The errant radial run-out expressed as the 

roundness deviation relative to associated LSQ circle 

 

When measuring the axial run-out with a 

measuring head (MH) with a flat stylus and a well 

centered hemisphere, all components except the 

errant axial run-out are negligible. The latter can be 

measured directly with the MH2. Similarly to the 

errant radial run-out, the errant axial run-out  
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iabb  at a given angle of rotation φi, may be 

presented in the form of a graph, as the roundness 

deviation relative to the LSQ associated circle. 

A measuring mandrel with a ball is used for 

measuring the errant radial and axial run-out of the 

spindle of machine tools (Figure 2c) [3]. Usually 

there is standardization of the heights z1 and z2 of 

the cross-section, in which the measuring of the 

semi-sphere is performed, or of the length z of the 

measuring mandrel, on which the ball is located 

(Figure 2b). 

It should be noted that the errant radial run-out 

is due to two factors: the parallel shift of the 

instantaneous axis of rotation and the angular 

deviation from their virtual datum axis. If 

necessary, these two components can be determined 

separately by assessing the angular errant run-out. 

In many cases, namely the evaluation of angular 

errant run-out is essential in determining the 

functional and metrological capacities of certain 

measuring systems containing rotary modules. 

The following proposed methodology allows 

the determination of the angular errant run-out 

using the results from the measurement of the radial 

run-out of different hemisphere profiles at different 

height z from the table top (Figure 2, a and b). 

As is seen on Figure 4a, the angle, which 

makes the ith instantaneous axis of rotation with the 

virtual datum axis, can be determined through the 

difference between two sections, located at distance 

Δz, using the formula: 

z

ii

i
zz

arctg



 12  (1) 

Analogically to the errant radial and axial run-

out, the angular errant run-out can be presented in 

the form of a graph for assessing the deviation from 

roundness of which 
i

  represents the departure 

from roundness relative to LSQ associated circle 

(Figure 4b). 

The depiction of errant radial, axial and angular 

run-out as graphs to for assessing the circularity 

deviation allows us to estimate both their local 

values as a function of the angle of rotation i, and 

their maximum dissipation in the form of a spread. 

Plotting of graphs is performed by standard 

programs. 

The advantages of scheme No. 1 are: 

 The possibility for determination of both errant 

radial and axial run-out, as well as errant angular 

run-out; 

 High precision of the original measurement data; 

 The simplicity of the measuring equipment; 

 The possibility for automating the measurement, 

processing and presentation of the results, which 

allows measurement of the errant radial and axial 

run-out in both static, as well as dynamic mode.  

 

 
 

 
Figure 4. The angular errant run-out presented in the 

form of a graph 

 

The shortcomings should refer the need for 

consecutive (non-simultaneous) measurement of the 

radial run-out of different heights of the measured 

hemisphere profiles, which hinders precise 

assessment of the random component of errant 

angular run-out. 

 

2.2. Scheme No. 2 

This scheme is inherently similar to scheme No 

1, but instead of the reference glass hemisphere it 

uses a stepped reference shaft, two pins of which 

have been pre-calibrated pursuant to EFK, and the 

face surface has been pre-calibrated according to 

EFE, using a roundness measuring machine (Figure 

5). The axial run-out along a path with radius R is 

measured with the probes MH1 and MH2. This path 

is also used for the calibration of EFE. The need for 

calibration of EFE is eliminated, when an 

interferential glass plate has been mounted on the 

face of the mandrel. 

The own deviations of the form (EFK of the 
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necks and EFE of the front surface) are excluded 

when measuring radial and axial run-out by 

introducing relevant corrections [3]. 

 

 
Figure 5. The axial run-out measured along a path  

with radius R 

 

The axial run-out is determined by the halve 

values of the sums 
iA  from the readings 

i
A1  and 

i
A2  of MH1 and MH2 at a specific angle of rotation 

φi, i.e. 

2

21 ii

i

AA
A


 . (2) 

Thus, the influence of the perpendicularity of 

the shaft face relative to the axis of rotation is 

excluded. 

A graph is made by these values similar to 

errant radial and angular run-out, and the local 

values of the errant axial run-out 
iabb , as well as 

their spread can be estimated by the roundness 

deviations with respect to the LSQ associated circle. 

An advantage of the scheme No. 2, besides the 

aforementioned of scheme No. 1, is the possibility 

for simultaneous measurement of the radial and 

axial run-out of the calibrated radial and axial 

profiles (surfaces) of the measuring mandrel, which 

is essential for the assessment of the errant angular 

run-out under a dynamic mode. 

To the shortcomings can be attributed the need 

for a measuring mandrel, calibrated according to 

EFK and EFE, which complicates the measurement 

equipment and affects the accuracy of 

measurement. 

 

2.3. Scheme No. 3 

Both the errant axial and angular run-out can be 

determined using this scheme (Figure 6). 

The axial run-out of the glass interferential 

plate laid on the object table is measured along 

paths with radii R1 and R2 using two measuring 

heads MH1 and MH2 (Figure 6a). In good centering 

the measurement line of MH1 coincides approxi-

mately with the axis of rotation i.e. can be assumed 

R1 ≈ 0 and the errant axial run-out can be evaluated 

directly by its reading 
i

A1 . A graph is built on the 

values of 
i

A2  on which the local values of 
iabbA  

and their spread is assessed as the deviations from 

roundness similar to schemes No. 1 and No. 2. 

 

 

  
Figure 6. The measurement of the axial run-out  

of the glass interferential plate l along paths  

with radii R1 and R2 

 

The axial run-out, measured with MH2, includes 

both the errant axial run-out as well as the errant 

angular run-out of the axis. 

Then in analogical manner to scheme No. 1, the 

current angle i between the instantaneous rotation 

axes and the virtual reference axis can be 

determined by the expression (Figure 6b): 

2

12
90

R

AA
arctg ii

i


 . (3) 

where 
i

A2  are the current readings of MH2 

measuring the axial run-out of the path of radius R2. 

Using these values of i a graph can be built, 

on which the current values of abb i.e. i  should be 

presented as deviations relative to LSQ associated 

circle (Figure 6c). 

The major advantage of scheme No. 3 is the 

ability to measure the axial and angular run-out with 

the help of a relatively simple measuring equipment 

and software. 
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The inability to determine the errant radial run-

out can be referred to the deficiencies. 

 

2.4. Scheme No. 4 

This scheme is typically used to determine the 

errant axial run-out, as well as the deviation from 

perpendicularity of the table relative to the axis of 

rotation. 

An interferential glass plate with negligible 

deviation from flatness is set on the table of the 

rotary module under test (Figure 7a) [1]. 

 

 
Figure 7. The measurement of the errant axial run-out,  

as well as the deviation from perpendicularity of the table 

relative to the axis of rotation 

 

The axial run-out of the plate along a path of 

radius R is measured using two measuring heads 

MH1 and MH2 located at 180°. 

As has already been mentioned, the axial run-

out includes the flatness deviation of the plate 

(which is negligible), the deviation from 

perpendicularity of the associated plane of the plate 

relative to the axis of rotation, the errant axial run-

out and the errant angular run-out of the axis of 

rotation. 

Determination of the errant axial run-out 

The readings of the two measuring heads 
i

A1  

and 
i

A2  are recorded simultaneously while rotating 

the object table at a relevant angle i. 

The semi-sum of these readings is calculated: 

2

21 ii

i

AA
A


 . (4) 

This semi-sum reflects only the errant axial 

run-out when the flatness deviation of the plate is 

negligible. The current position of the center of the 

plate in z-axis direction can be evaluated using the 

values of 
iA , relative to their centroid (average 

value) and also the spread of these deviations 

(
minmax ii AA  ) (Figure 1b). 

 

Determining the errant angular run-out 

Two ways to evaluate the errant angular run-

out are proposed as follows: 

1st way: Through the differences in the estimates of 

the deviations from the perpendicularity of 

the plate relative to the axis of rotation 

The semi-differences 'A  and "A  in the 

readings of the measuring heads are calculated at 

angles of rotation i and i + 180°: 

2

,2,1
'

ii

i

AA

A

 
 ; (5) 

 

2

180,2180,1
"

 
 ii

i

AA

A
. (6) 

These values reflect the deviations from the 

plate perpendicularity relative to the axis of rotation 

and the errant angular run-out (shake of the object 

table). 

In the absence of errant angular run-out the 

values of 
'A  and 

"A  will be equal to the absolute 

value, but with opposite signs (Figure 7b), i.e. 

"' AA  . (7) 

The deviation from perpendicularity at a radius 

R is determined by the maximum value of the 

difference "'
max minmax ii AAA  . 

In the presence of errant angular run-out: 
'''"

ii AA  ; 

2
'

'''
2

'''
1''' AA

Ai


 ; 

''''
ii AA  . 

The difference ''''''''''
iiii AAAA   
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reflects the errant angular run-out as the angle i 

between two instantaneous axes of rotation, located 

at 180° from each other - i.e. angles i and i+180° 

(Figure 7b): 
R

AA
arctg ii

i

'''' 
 . 

When the difference 
''''
ii AA   is positive, the 

angle i is counterclockwise, and when it is a 

negative - clockwise. 

The current values of the angle between the 

instantaneous axes of rotation and the virtual 

reference axis cannot be determined by this 

procedure, but information for maximum "shaking" 

of the object table is received, i.e. of 
maxi . 

2nd way: Through the deviation from sinusoidality 

In the absence of errant axial and angular run-

out and in the presence of a deviation from plate 

perpendicularity relative to the axis of rotation, the 

local values of the axial run-out are described by a 

sine wave. 

The presence of errant run-out will involve а 

deviation from sinusoidality EFS (Figure 7c). 

In this case, under deviation from sinusoidality 

is meant the deviation of the real sinusoidal 

movements of a point of the interferential plate 

from the perfect sine-curve due to errant angular 

run-out. 

The deviation from sinusoidality EFSi at a 

given rotation angle i of the table is determined 

with regard to the ideal sine-curve built relative to a 

perfect sine wave, using the least squares method. 

Then the current values of angular errant run-

out i expressed in angular units i is determined by 

the expression:  

R

EFS
arctg i

ii  '90 , 

and the spread as a difference between the maximal 

and the minimal values of i: 

minmax ii  . 

The major advantage of the scheme discussed 

is the possibility of accessing not only the errant 

axial run-out but also the errant angular run-out, 

while using a simple measurement equipment, both 

in a static and in a dynamic mode. 

The inability to determine the errant radial run-

out may be allocated to the shortcomings of the 

scheme. 

 

2.5. Scheme No. 5 

Through a measurement under this scheme 

the errant axial and angular run-out can be 

determined. 

An interferential glass plate with negligible 

deviations from flatness is set on the object table of 

the rotary module. Using three measuring heads, 

which are located on a circle with a given radius R 

at 120° interval from each other, the axial run-out of 

the plate is measured during its 360° rotation 

(Figure 8a). 

 

 
 

 
Figure 8. The measurement of the errant axial and 

angular run-out 

 

Using the readings of measuring heads at a 

given rotation angle of the table i - i.e. by the 

coordinates of three points on the plate in a 

coordinate system xyz, using a standard program 

and the position of its centroidal, the location of its 

centroid along axis z (coordinate zi) is calculated, as 

well as the position of the normal vector of this 

plane relative to the axis of rotation. The axis of 

rotation is oriented along the axis z. 

The fluctuation of the coordinate zi of the 

centroid is the errant axial run-out, while the 

variation of the position of the normal vector to the 

axis of rotation reflects the errant angular run-out. 

Both types of run-out can be expressed with 

their current values relative to the corresponding 

centroid, or through their spread. 

The proposed by this scheme approach can be 

successfully used for the assessment of the angular 

and axial position of any object table (platform), 

performing linear and angular displacements in the 

space (Figure 9), both under static and dynamic 

mode. 

Under a static mode, the measured object can 

be placed within the workspace of a coordinate 

measuring machine (CMM) and the coordinates of 

the corresponding points in the coordinate system 

XYZ can be consequently determined. 
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Figure 9. The assessment of the angular and axial 

position of any object table 

 

The main advantage of the scheme is the ability 

to determine the errant axial and angular run-out 

under static, as well as under dynamic mode. 

The proposed approach under this scheme can 

be successfully applied to the assessment of the 

axial and angular position of any object table 

(platform) performing axial and angular movements 

in the space under static and dynamic mode. 

The complicated measuring equipment (several 

measuring heads) and software may be referred to 

the disadvantages. 

The approach, proposed under this scheme, can 

be successfully used for assessing the axial and 

angular position of any object table (platform) 

carrying out axial and angular movements in the 

space both under a static and under a dynamic 

mode. 

The measurement in static mode involves the 

use of CMM. A measurement platform together 

with the mounted on it prismatic body is located 

within CMM workspace. The coordinates of six 

pre-marked points of the cube in the coordinate 

system of the CMM (XYZ) are determined during 

the discrete movement of the platform (Figure 9). 

For each static position, using the three points 1, 2 

and 3, the defined by it planes are determined, the 

position of the normal vector to the plane relative to 

axis z is calculated, as well as the centroid of the 

three points - i.e. the translation z, rotations x and 

y of the body relative to axis x and axis y. 

Using the coordinates of points 3 and 4, the 

translation x along the axis and the rotation about 

the axis z, i.e. φz are determined. 

Using the coordinates of point 6, the translation 

y can be determined. 

In this way complete information of the 

platform position can be obtained during its discrete 

movement within the workspace of CMM. 

Under dynamic mode the same effect is 

achieved with simultaneous measurement of the 

coordinates of the respective points, using 

measuring heads mounted on a stable fixed initial 

datum (datum coordinate system) (Figure 10). 

 

 
Figure 10. The assessment of the platform position  

under dynamic mode 

 

For small displacements, when the impact of 

the change of the points’ positions on the cube 

surfaces can be considered negligible, 

measurements can be performed simultaneously 

with the six MH. 

When the displacement of the measured points 

is significant, it is appropriate to determine the 

position of each side of the cube separately, based 

on three measured points. 

 

3. Conclusion 
1. The constancy of the axis of rotation 

measured by radial, axial and angular errant run-out 

is a basic requirement towards the objects, 

accomplishing accurate rotational movements. 

2. The accomplished survey and analysis of 

various schemes for determination of this 

inconstancy, allows the selection of the most 

appropriate way to measure the respective errant 

run-out for each case. 

3. Using appropriate automation and software, 

all discussed and analyzed schemes allow receiving 

and processing of the primary measurement 

information for the determination of errant run-out 

under static, as well as under dynamic mode. 
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