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Abstract 
Cutting operations are still one of the main methods used in the industry for surface generation in mass 
production. The dynamics of these processes are complex and having a good insight into the interdependencies of 
the nonlinear physical phenomena can be translated into better cutting performance. One of the main cutting tool 
geometrical parameter, usually associated with wear, is the cutting edge radius. Continuous direct evaluation of 
this parameter exhibits some important limitations offline, if this evaluation needs to be online the whole process 
becomes very complicated due to the measurement limitations that might appear. For online cases, the best 
approach is to determine the amplitude of this parameter indirectly using various side effects that can be 
correlated. One possible option is to monitor the vibrations generated by the resulting cutting forces. 
In the latest years, the usage of explicit finite element methods (FEM) to simulate the cutting processes has grown 
exponentially with the continuous increase of computation efficiency. With the help of Computer-Aided 
Engineering (CAE in short) solutions and using the latest advances in design space exploration (DSE) solutions, it 
is possible to create models able to parametrically explore a design space (DS), having precise targets, and also get 
the important correlations for all the important, quantifiable, cutting parameters. 
This paper presents an innovative method to create tool wear evaluation models focused mainly on the cutting 
edge radius indirect evaluation. The proposed method uses guided simulation loops able to generate a variety of 
dynamic signatures which are further post-processed to get a complex correlative model. The model can be applied 
in real cutting cases using the reciprocity property and can determine online the state of the cutting edge radius 
for further tool wear evaluation. The paper concludes with an analysis of the obtained model and the applicability 
of the data for the intended purpose. 
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1. Introduction 
Some of the oldest surface-generation processes that are still used today are caught under one big 

category, machining. The fundamental characteristic of a machining process is the controlled removal 
of raw material from the workpiece using a cutting tool and it is graded by the material removal rate 
(MRR) parameter. 

The wide variety of cutting processes (turning, boring, drilling, milling, broaching etc.), each 
possessing specific geometric, kinematic, tool etc. requirements, creates a very complicated 
environment for which unified control techniques can be applied. The present paper focuses only on 
one small (general) aspect that every cutting tool possesses, cutting edge radius r, strongly linked to the 
tool wear. In order to build the proof of concept, the present research is concentrated on the face turning 
operation of AISI 1045 steel. 

There is a great interest from the academic community to understand how the flank wear evolves 
through the tool-life cycle, how to optimized growth rate and finally how to detect when it reaches a 
critical level from which it can compromise a workpiece. The main difficulty is the fact that this 
geometric aspect of the tool is practically in the most inaccessible place, where the cutting takes place, 
making it extraordinarily difficult to measure during the cutting. In their work, Patel V.D. et al [1], 
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modeled the cutting process of finish turning of hardened AISI D2 steel taking into account also the flank 
wear. One of the main conclusions was that the cutting forces can be predicted with more accuracy when 
this parameter is taken into consideration with experimental validation that showed a prediction error 
between 2.24 and 6.4%. Suyama D.I. et al [2] studied the influence that the vibrations can have on tool 
wear mechanism, very important in the context of the present work, for turning operations of hardened 
steels with intriguing results. The research concluded, among other things, that the induced vibrations 
are not influencing the tool life but rather it has a great impact on the wear mechanism. When the 
amplitudes of the vibrations were high, diffusion was the predominant mechanism and when the 
amplitude was low the abrasion was the main mechanism. 

There is also another approach that is becoming more and more popular with the Industry 4.0 
movement and that is the usage of artificial intelligence (AI). Serin G. et al [3] present a very detailed 
study for the state of the art for this new emerging technology focused on tool condition monitoring. A 
dedicated study for the application of AI in tool wear prediction for hard turning operations can be found 
in [4]. Thangarasu S.K. et al managed to predict the tool wear for EN8 steel using the cutting forces and 
the roughness of the obtained surface using an artificial neural network. The team also concluded that 
the tool wear was greatly influenced by feed f (61.63%) and slightly by the depth of cut doc and cutting 
speed V (all terms are explained and used later). There is also research focused on other, more complex, 
operations like milling. Wu T.Y. et al [5] managed to predict with enough accuracy the workpiece 
roughness using the machine vibrations and the cutting parameters. 

The present paper proposes a novel method to create tool wear models for any cutting operations 
and although, for now, it is exposed only for the turning -face cutting operation of AISI 1045 steel within 
some limited cutting parameters, the method should be applicable, with the current adjustments, for 
any machining operation. If the machining operation can be modeled using computer-aided engineering 
(CAE) solutions then, theoretically, it is possible to enclose the variation space of all the cutting 
parameters in an design space (DE) that can be picked up by an design space exploration (DSE) product 
and explored determining also all the interdependencies/correlations that the input/output parameters 
have, thus connecting some easily measurable phenomena with the tool wear state. 

 

2. Design Space Exploration and Synthetic Sample Generation 
The proposed method uses synthetic cutting data generated by the synergy created between CAE and 

DSE products, described herein, that are not perfectly compatible for the intended purpose. 
The universality of the solutions, especially the DSE ones, requires some very specific tweaks to form 

the complete ecosystem where the simulation loop can function. In the following, all the critical aspects 
required to define a model of this kind will be exposed (Figure 1). 

 

 
Fig. 1. DSE - CAE cutting simulation loop with cutting edge radius  

being the main tracking parameter 
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The core of any DSE solution lays in the method that explores, evaluates trends and builds new 
simulation cases, all based on the DS dimensions and the targets. In this case, the most common 
parameters to increase the overall MRR rate were chosen as targets: increase the V and f and reduce the 
RMS values for all frequencies bands (more details in the following chapters). 

 
2.1. Turning, main kinematic and dynamic characteristics 

The main kinematic parameters in case of face turning are N [rpm] – spindle speed, f [mm/rev] – feed, 
and doc [mm] – deep of cut. To compute the most important cutting parameter, V – cutting speed 
[m/min], the D [mm] – workpiece diameter is needed such that (Figure 2 – left side): 

𝑉 [𝑚/𝑚𝑖𝑛] =
𝐷[𝑚𝑚] ∙  𝜋 ∙  𝑁[𝑟𝑝𝑚]

1000
 (1) 

 

 
Fig. 2. The main kinematic and geometric parameters for face turning operation,  

the transition from oblique cutting (left) to orthogonal cutting (right) 
 
The chip section (Figure 2 right), directly linked with the cutting behavior of the operation, is 

geometrically dependent on f – feed and doc – deep of cut. Together with a [°] – rake angle, b [°] – relief 
angle, r [µm] – cutting edge radius and the physical properties of the tool-workpiece interface, the 
cutting process can be simplified, from a 3D mechanical problem to a 2D problem, using the orthogonal 
approach. 

This simplification reduces the cutting force vector by dropping the Z direction and keeping only the 
main two cutting forces, the normal force Fn = Fx and the tangential force Ft = Fy, for the study. 

The literature already provides some insights into the effect that the cutting edge radius r might have 
on the overall cutting dynamics. This parameter can have a great impact on the effective rake angle a 
especially when the value of it approaches the same order of magnitude as feed f. When this happens, it 
is possible to see an effect of sing flipping for the rake angle a which has a great impact on Fx and Fy 
distribution and characteristics (Figure 3). Furthermore, the negative rake angle serves to impose 
compressive stresses on the workpiece surface leading to negative effects not just on the tool wear 
process but also on the workpiece quality [6]. 
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Fig. 3. Effect of cutting edge radius on effective rake angle. When the uncut chip thickness  

is larger compared with the edge radius, the effective rake angle flips signs 
 

2.2. Explicit simulation for cutting, orthogonal cutting 
In terms of optimization, oblique problem to orthogonal problem conversion, it was demonstrated 

in [7] that, if applied correctly, this approach can reduce the computation effort by 90% thus generating 
a lot more samples per time/resources unit. 

 

 
Fig. 4. Orthogonal cutting simulation, critical dynamic aspects 

 

The usage of CAE simulation requires knowledge of the following parameters: V [m/min], a [°], b [°], 
r [µm], f [mm], doc [mm] and the wp_mat - workpiece material (Figure 1), f no longer expressed in 
[mm/rev] but in [mm] due to the conversion. The cutting tool is considered rigid and the Coulomb 
friction coefficient is used, thus the tool_mat – tool material is defined too as Carbine – General. 

Commonly, the meshing process for CAE – FEM (Finite Element Method) implies the usage of 
triangles and/or quadrangles elements for the discretization of the physical domains (Figure 4). Besides 
the complexity of the material properties definition, usually dependent on various other phenomena, 
this meshing process needs to be updated continuously with respect to the mechanical state of the chip. 
This is a particularly difficult problem to control and the literature offers multiple options to control 
this, the most common one being the Arbitrary Lagrangian Formulation (ALE), more details in [8]. 

The main objective for the CAE component of the DSE-CAE loop is to catch in the Fx and Fy dynamic 
signature for the design space (DS) domain with respect to r. In order to facilitate this process, the mesh 
density of the node detachment area needs to be finer but also the shear plane needs to be controlled to 
avoid having noise in the signal caused by the effect of share plan detachment. 

 
2.3. Post-processing the cutting results and coupling the results to the DSE – CAE simulation loop 

The following parameters are considered for the CAE component and not for the DSE-loop 
component since they are constants: wp_mat – workpiece material, h [mm] – workpiece height,  
l [mm] – workpiece length, tool_mat – tool material, p [mm] – rake length, q [mm] – relief length,  
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doc [mm] – deep of cut, T0 [°C] – initial temperature, friction and the usage of coolant (Figure 1 – left, 

bold). The design space for the DSE loop will be formed by: a [°] – rake angle, b [°] – relief angle,  
r [mm] – cutting edge radius, V [m/min] – cutting speed, f [mm] – feed and loc [mm] – length of cut 
(Figure 1 – left, orange). 

In order to get the dynamic signature of each simulation, the time domain signal (Fx and Fy) is 
transformed into a frequency domain signal using Discrete Fourier Transformation (DFT). Furthermore, 
to reduce the dimensions of the DS, the frequencies spectrum are RMS averaged per frequency bands in 
order to have an overall, banded, energy characteristic.  

The entire process of converting the time domain data obtained from the CAE simulation into a 
frequency domain spectrum ready to be injected back to the CAE-DSE loop was specifically designed by 
the authors of this paper using Python™. 

The nature of the simulation, explicit cutting with transient and stable regimes, exhibits the first 
impediment that needed to be handled in the post-processing component. For this detection, it was 
decided that the temperature variation can be used as a tracking value due to the nature of the 
deformation process. In the new Python program, a mechanism able to detect the first time step where 
the temperature stays constant within a threshold (in this case +/- 5%) and then selects the data based 
on that time step was implemented to solve this issue (Figure 5).  

 

 
Fig. 5. The first stage of Python script post-processing, reading the force data and stable regime 

detection for: V = 34.117 m/min, f = 0.917 mm/rev, r = 20 µm (left), and V = 23.473 m/min,  
f = 0.1 mm/rev, r = 90 µm (right) 

 
After the stable faze detection, the DFT conversion is applied using the commonly used Hanning 

windowing. The final step was to split the de obtained frequency spectrum into bands of interest and 
applying an RMS average for each band to obtain an overall energy characteristic e.g. RMSx b1 [N] – RMS 
value for frequency band 1 in the x-direction (Figure 1). The frequency bands were defined as following: 
b1 = 0.1…0.25 [kHz], b2 = 0.25…0.5 [kHz], b3 = 0.5…0.75 [kHz], b4 = 0.75…1 [kHz], b5 = 1…2 [kHz],  
b6 = 2…3 [kHz], b7 = 3…4 [kHz], b8 = 4…5 [kHz], b9 = 5…6 [kHz], b10 = 6…7 [kHz], b11 = 7…8 [kHz],  
b12 = 8…9 [kHz], b13 = 9…10 [kHz]. This can be used to evaluate the dynamic behavior of the process 
(Figure 6), how it might impact the overall machine tool (MT) stiffness characteristic and also give an 
insight into the r condition (first used to define the detection model and then for online monitoring). 

 

3. Results and discussion 
Using the described method, it was possible to generate 25 cutting samples for the proposed 

machining operation within three weeks of computation effort. The computations were done on a 
machine having the following characteristics: CPU Intel i7 2.7 GHz, RAM 32 Gb, SSD 512 Gb. 

Based on the obtained data, the correlation between the two cutting forces signatures and the state 
of the cutting edge radius r can be extracted (Figure 7 and Figure 8). Analyzing the first plot, Fx 
correlation with r, some critical aspects about how the evolution of the cutting edge radius can be 
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monitored becomes quantifiable. The low-frequency bands are the most sensitive to the evolution of r 
having a distinguishable inverse proportionality characteristic (between band 1 and 9). Similarly, 
analyzing the second plot, Fy correlation with r, the situation is more complex. In this case, both inverse 
and direct proportionalities are coexisting in the banded spectrum, exposing an even more reliable 
coupling since the uniqueness of the signature will have a higher probability. 

 

  
V = 34.117 m/min, f = 0.917 mm/rev, r = 20 µm V = 23.473 m/min, f = 0.1 mm/rev, r = 90 µm 

Fig. 6. Cutting forces spectrum results – RMS averaged for each frequency band 
 

 
Fig. 7. Correlation plot, cutting dynamics characteristics of Fx vs cutting edge radius 

 

 
Fig. 8. Correlation plot, cutting dynamics characteristics of Fy vs cutting edge radius 

 

The design space limits for the obtained data were set as follows: a = – 8…+8 [°] – rake angle,  

b = 0…8 [°] – relief angle, r = 20…100 [µm] – cutting edge radius [12], V = 1… 120 [m/min] – cutting 
speed, f  = 0.1…2 [mm] – feed. 
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Based on the correlation plots the conclusion is that the proposed method has the potential to expose 
very interesting and intertwined connections between the cutting force signatures and the state of the 
cutting edge radius r. It is also a scalable solution that can be adapted to any machining operation with 
the correct adjustments with one possible bottleneck in the form of CAE simulation capabilities. 

 
4. Conclusions 

The present paper is answering to the increasing demand for machining condition monitoring 
solutions for the critical aspects of cutting processes. The indirect monitoring of cutting edge radius is 
addressed and a new method that uses CAE and DSE solution is proposed. The objective is to define 
models able to analyze dynamic cutting signatures then correlate them with the state of the cutting edge 
radius for further processing. 

The main component of this new method is the usage of Design Space Exploration (DSE) solutions 
connected to a Computer-Aided Engineering (CAE) solution. If the cutting problem can be modeled using 
quantifiable inputs and outputs correlated with a general scope, in this case reducing the vibrations, the 
DSE approach allows the construction of guided simulation loops able to generate dynamic signatures 
that are further correlated with the cutting edge radius behavior. 

Besides the overall concept of coupling the two solutions (CAE and DSE), the authors are also 
presenting specific solutions developed in order to connect all DSE-loop components correctly. A new 
Python script was developed to execute critical operations like stable cutting regime detection, data 
selection, filtering, time-to frequency-domain transformation and exporting the results for the next 
simulation loop. 

The obtained results are in good agreement with the proposed objectives and expose a possible new 
field to be investigated by other researchers that are working for similar models. Although no emphasis 
has been placed on numerical validation in this paper, the proof of concept has been made and the 
results obtained have suggested that this method is scalable and flexible enough to be used as a general 
tool. 
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