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ROLLING DISK DYNAMICS
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Abstract. The present paper aims to establish the diffexkatjuations of the motion for a homogeneous diglich is
rolling upon a rough horizontal plane. The resulil prove useful in a future research, when thetior of a
monowheel vehicle will be studied.
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1. Introduction built monowheel vehicles is the one made by Kerry
The first monowheel vehicle was built by Mclean in the 2001 (figure 2). The presented model
Rousseau, a craftsman from Marseilles, and dateshas a 5 HP engine and costs about $8500 [1].
back to 1869 (figure 1). As there is no steering
mechanism, the rider must have a good sense of
balance. This is probably the explanation of the
delay in the extension of this simple and
economical vehicle.

Bt

Figur2. Kerry Mclean’s monowheel

2. Rolling disk motion
2.1. Generalities
The rolling disk motion is a somehow
difficult problem to put in equation, because of
non-holonomous character of the disk link with the
support plane (the road plane). The disk has three
degrees of freedom, but in order to find the motion
. equations, we need five coordinates. The
Figure 1. Rousseau’s monowheel differentials of these five coordinates, which
represent the virtual displacements, should verify
Lately, thanks to the improvement in engine the two Pfaffs equations of the link (rolling
science and in material technology developments, conditions), and then Lagrange’s equations will
the monowheel vehicle became both a useful and ainvolve two amplifiers.
fun vehicle. One of many recent models of hand-
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2.2. Reference frames yv(x,y,zt)=0 ©)

First, we shall take a fixed reference frame of course, if the equation (1) cannot be integrated
O1x1 171, having the origin in the road plane, and the system is calledon-holonomous.
the O,z axis pointing vertically upward (Figure In order to answer to the question of the
3). The second reference frame @xyz that is basic difference between a holonomous system and
a non-holonomous one, it is enough to examine the
catastatical systems, taking into account only the
simple cases in which the coefficiemtsb, cdo not
depend of time.

bound to the disk and oriented to its principal
central inertia directions. The disk orientation is
established by Euler's angle§,$,y .The third

reference frame will b®'x'y'z , which is always If the Pfaff form adx+bdy+cdz does
parallel toCxyz -frame, but having a fixed origin.  admit an integrating factor, then the system is
holonomous and the link equation can be written as

I(x, y,z) =const (4)

Therefore, it results that, from every given
point (let us say, the coordinates origin) a two-
parametric point set may be sufficient, and namely
the points of the surface

r(x,y,z)=r(0,0,0). (5)

On the other hand, if the system is non-
holonomous, a three-parametric point set may be
sufficient. For example, let the link equation be
given in the form

dy-zdx=0, (6)
which, evidently, does not admit an integrating
factor. In this case, we may find a solution

The coordinates of the centre of mass C will corresponding to the condition (6), and leading

Figure 3. Reference frames

be &,n,asin¢ , wherea — the disk radius. from the origin to an arbitrary poir, y»,z5. In
order to demonstrate this, let us examine the
2.3. Holonomous and non-holonomous systems solution
In the most general case, a link equation can y= f(X). zZ= f'(X), (7
be written in a Pfaff form with f(x)OC, . The link equation (6) is, evidently,
adx+bdy+cdz+ pdt=0, 1) satisfied, and what remains, is to chose fi(x¢

wherea, b, ¢, pare given functions belonging to  function form so that it verifies the conditions
the classC; of the variablesx, y, z, t.Let the f(0)=0, £'(0)=0, f(xp)=ys, f'(x2)=2,. (8)
displacements corresponding to equation (1) be

some possible displacements. In the same way, the2 4. virtual displacements

virtual displacements verify the equation Along a virtual displacement of the disk, the
adx+bdy+cdz=0. 2) differentials d&,dn,dd,dd,dy are bound by two
As a rule, the possible displacements are relationships (rolling conditions), namely [3]
different from the virtual ones, but, if the furani d& cosp +dn sing —addsin® =0, (9)

p is always equal to zero, these kind Of _ jrcing +dncosd+adw +addcosd=0
displacements are identical. In this case, theegyst £sing .n v ¢ (1.0)
In this problem, of course, the virtual

is denominatedcatastatical. So, a catastatical disol ' d th ible disol "
system is characterized Iy the identity between Isplacements an € possible displacements are
coincidental. In order to find the proper form bét

?nediiv)lr:t?;i Sdlzglg)fe.m;rltséizr;d g;iiéigsslzls dones, equations (2) and (3), we shall start from the
P Y= b peed. condition that the poinK of the disk has to be

_ If the Pfaff's equation (1) of the link can be  jngtantaneously at rest. So, the velocity of the
mtegratedd_ (after its ?mpllf;caﬁlon Wltr?ayl &  centreC of the disk will have the components
corresponding integrating factor), then we shafl sa ~ -

the system isholonomousin this case, the link O~ 8Wz:8Wy 0r0, a(p +pcosp) a6, _
equation can be written in the final form Now, the components of the same velocity
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vector on the direction$);P and O;y' will be
equal respectively tadsin®, —a(y + ¢ cosh).

Equalizing these  expressions  with
§cosp +nsing, —Esing +rcosp  respectively,
we obtain the rolling conditions (9) and (10).

3. Motion differential equations
3.1. Lagrange function

The Lagrange function is defined as the
difference between the kinetic energy and the
potential energy of the system, namely [2]

L:%M (Ez +112 +a°cod 692)+

%JX(GZ +92sin26)+ (11)

%Jz(lb + ¢ cosd)? - Mgasins,

where M — mass of the diskJy =Jy,JZ - its
axial moments of inertia.

3.2. Lagrange equations

The equations of the rolling motion of the
disk will be deducted with the help of the Lagrange
function (11) and rolling conditions (9) and (10).
They are as follows:

M & = Acosp —psing (12)
M i =Asing +pcosp (13)
%(Ma2 cos? 66 + Jxé)z— Ma? cosBsin86? +
+chosesin6q>2 - J,w,0sinB - Mgacost - (14)
—-Aasing,
%(J x sin? 09 +J,w, cose) = pacosh, (15)
d
a(‘] zwz) =Ha (16)
Here, we have denoted byw,, the

quantity +¢dcosD. Altogether, we have seven

equations: five equations (12)-(16), and the rgllin
conditions [3, 4]:

& cosp +1nsing = asindb, (17)

-&sing +ncosh = —aw,. (18)

The physical sense of the quantiti®gu is
obvious: from the equations (12) and (13) we get

M (€ cosp +F{sing) = A, (19)

M (~Esing +ficosp) =1, (20)
in this respect\,u represent the components of

the reaction force in the contact point Kn the
directionsO;Pand Oy'.

Now, it is easy to express, in terms of
0,0, and their derivatives; in this sense, from
(17) and (18) we have

Ecosp +iising + (—Esinq) +r']cos¢)¢ =

=a(sineé+coseéz), @D
:}‘izi(:\)¢+ﬁ009¢—(écos¢+r']sin¢)¢ = (22)

Considering the equations (17) — (20), we
get
A= Ma(sineé +cosf6? + wzq)), (23)
1=Malsine8¢ - o, ). (24)
So, above, we have the expressions of the
contact reaction components on the;P and
O,y directions.

Now, replacing these expressionshaindp
in the equations (14) and (16), and eliminating
between (15) and (16), we find

(JX + Maz)é = J,h2 cosBsin® -

(25)
- (JZ + Maz)ooch sinB—Mgacos,
(JZ + Maz)ooz = Ma26¢sin®, (26)
%(J (Psin? e): J,w,Bsind. (27)
These three equations contain three

unknowns:6, ¢, w,.
Now, we can constitute two differential
equations which will expressw,and ¢ as

functions of 6. Denoting cos® by p, we can
rewrite the equations (26) and (27) as

(2k +1) d;”pz = ¢, (28)
dip{(l— p2h}= 20, (29)

Here, we have denotedeszazand

J, = 2kMa?. Eliminatingd , we obtain

d (1 z)dooz 2

— - -———w, =0 30
dt{ P Fap |2k (30)
This  differential Legendre equation

determinesw, in function ofp. The value of the

coefficient _2 is equal to 1 for a rim
2k +1
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(considered a circular material line), andfsltd)or a

disk. Eliminating w, from (28) and (29), we

obtain
b-p2)a8 -2
dp2 2k +1

¢, (31)

where( is equal to(l— p2)¢ .

Finally, the differential equation (31)

determineg, and ¢ consequently, as functions mf

3.3. Steady-state turning

From the equation (25), we can obtain the
conditions for the steady-state turning of the disk
That means theegulated precessigmamely the
motion in which the disk makes an anglewith
the horizontal plane, and its centre describes a
circle having the radiub, with the speed equal to
bw.

Of course, such a case may be considered
only if any friction is neglected (ideal case),tbe
disk is driven by an engine. The latter case is
exactly the case of a monowheel vehicle.

In this steady-state turning, the valge is

equal tow; here, the value is determined by the
equation

{(2k +1)b + kacosa}w? = gctaa, (32)
which can be easily deduced using the equality
—aw, =bw

The presented calculi illustrate the way in
which Lagrange equations can solve such a
problem of non-holonomous systems. As one can
see, this is entirely possible.

Starting from these results, the authors
decided to continue the study of the monowheel
motion, making the necessary adaptations for this.
First, the principal difference is that monowheel
rolling part is not a disk, but only a circular rim
and tyre. Further, the inner body of a monowheel
does not participate to all three rotations that th
rim can make simultaneously; in fact, this inner
frame has only a relative rotation against the oute
rim, in the plane of the last one. More precisély,
angular speed about the axis normal to plane of the
wheel Cy- axis, in Figure 3) is independent of the
wheel angular speed.

This study makes the object of another work
presented in the same conference.

4. Conclusions

The monowheel vehicle is a system of
bodies designed to transport one person on road, as
well as off road. It differs from a motorcycle bt
inside placement of the rider, as well as the great
radius of the rolling wheel. This great diameter
permits a good passing capacity over the off road
irregularities and a small fuel consumption on the
good road surfaces.

Its small dimensions in breadth permits a
good circulation on the agglomerated streets of
modern towns, as well as an easy parking.

Although at its beginning, the vehicle speed
was very small, because the rider force drove them,
after introducing gas engine motors the difficudtie
of maintaining the direction and stability were
eliminated. Besides, they are very good means to
take a ride during holidays.

The present paper represents the
introductory part in the study on the serious
problem of the motion of such a vehicle. The
difficulty is generated by its non-holonomous links
with the road surface, as we already pointed out.
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