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Abstract. The present paper aims to establish the differential equations of the motion for a homogeneous disk, which is 
rolling upon a rough horizontal plane. The results will prove useful in a future research, when the motion of a 
monowheel vehicle will be studied. 
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1. Introduction 

The first monowheel vehicle was built by 
Rousseau, a craftsman from Marseilles, and dates 
back to 1869 (figure 1). As there is no steering 
mechanism, the rider must have a good sense of 
balance. This is probably the explanation of the 
delay in the extension of this simple and 
economical vehicle. 

 

 
Figure 1. Rousseau’s monowheel 
 
Lately, thanks to the improvement in engine 

science and in material technology developments, 
the monowheel vehicle became both a useful and a 
fun vehicle. One of many recent models of hand-

built monowheel vehicles is the one made by Kerry 
Mclean in the 2001 (figure 2). The presented model 
has a 5 HP engine and costs about $8500 [1]. 
 

 
Figure 2. Kerry Mclean’s monowheel 

 
2. Rolling disk motion 
2.1. Generalities 

The rolling disk motion is a somehow 
difficult problem to put in equation, because of 
non-holonomous character of the disk link with the 
support plane (the road plane). The disk has three 
degrees of freedom, but in order to find the motion 
equations, we need five coordinates. The 
differentials of these five coordinates, which 
represent the virtual displacements, should verify 
the two Pfaff’s equations of the link (rolling 
conditions), and then Lagrange’s equations will 
involve two amplifiers. 
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2.2. Reference frames 
First, we shall take a fixed reference frame 

1111 zyxO , having the origin in the road plane, and 

the 11zO  axis pointing vertically upward (Figure 
3). The second reference frame is Cxyz that is 
bound to the disk and oriented to its principal 
central inertia directions. The disk orientation is 
established by Euler’s angles ψϕθ ,, .The third 

reference frame will be zyxO ′′′′ , which is always 

parallel to Cxyz -frame, but having a fixed origin. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The coordinates of the centre of mass C will 

be ϕηξ sin,, a , where a – the disk radius. 
 

2.3. Holonomous and non-holonomous systems 
In the most general case, a link equation can 

be written in a Pfaff form 
,0=+++ dtpdzcdybdxa  (1) 

where a, b, c, p are given functions belonging to 
the class 1C  of the variables x, y, z, t. Let the 
displacements corresponding to equation (1) be 
some possible displacements. In the same way, the 
virtual displacements verify the equation 

.0=δ+δ+δ zcybxa  (2) 
As a rule, the possible displacements are 

different from the virtual ones, but, if the function 
p is always equal to zero, these kind of 
displacements are identical. In this case, the system 
is denominated catastatical. So, a catastatical 
system is characterized by i) the identity between 
the virtual displacements and the possible ones, 
and ii ) that speed { } 0,, =zyx &&& is a possible speed. 

If the Pfaff’s equation (1) of the link can be 
integrated (after its amplification with a 
corresponding integrating factor), then we shall say 
the system is holonomous. In this case, the link 
equation can be written in the final form  

( ) 0,,, =γ tzyx  (3) 
Of course, if the equation (1) cannot be integrated, 
the system is called non-holonomous. 

In order to answer to the question of the 
basic difference between a holonomous system and 
a non-holonomous one, it is enough to examine the 
catastatical systems, taking into account only the 
simple cases in which the coefficients a, b, c do not 
depend of time. 

If the Pfaff form dzcdybdxa ++  does 
admit an integrating factor, then the system is 
holonomous and the link equation can be written as 

( ) .,, constzyx =Γ  (4) 
Therefore, it results that, from every given 

point (let us say, the coordinates origin) a two-
parametric point set may be sufficient, and namely 
the points of the surface 

( ) ( ).0,0,0,, Γ=Γ zyx  (5) 
 On the other hand, if the system is non-

holonomous, a three-parametric point set may be 
sufficient. For example, let the link equation be 
given in the form 

,0=− dxzdy  (6) 
which, evidently, does not admit an integrating 
factor. In this case, we may find a solution 
corresponding to the condition (6), and leading 
from the origin to an arbitrary point 222 ,, zyx . In 
order to demonstrate this, let us examine the 
solution 

( ) ( ),, xfzxfy ′==  (7) 

with ( ) 2Cxf ∈ . The link equation (6) is, evidently, 
satisfied, and what remains, is to chose the f(x)    
function form so that it verifies the conditions 

( ) ( ) ( ) ( ) .,,00,00 2222 zxfyxfff =′==′=  (8) 
 
2.4. Virtual displacements 

Along a virtual displacement of the disk, the 
differentials ψϕθηξ ddddd ,,,, are bound by two 
relationships (rolling conditions), namely [3] 

,0sinsincos =θθ−ϕη+ϕξ dadd  (9) 
0coscossin =θϕ+ψ+θη+ϕξ− dadadd  (10) 

In this problem, of course, the virtual 
displacements and the possible displacements are 
coincidental. In order to find the proper form of the 
equations (2) and (3), we shall start from the 
condition that the point K of the disk has to be 
instantaneously at rest. So, the velocity of the 
centre C of the disk will have the components   

yz aa ωω− ,,0  or ( ) .,cos,0 θθϕ+ψ− &&& aa   

Now, the components of the same velocity 

 
Figure 3. Reference frames 
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vector on the directions PO1  and yO ′1  will be 

equal respectively to ( ).cos,sin θϕ+ψ−θθ &&& aa   
Equalizing these expressions with 

ϕη+ϕξ−ϕη+ϕξ cossin,sincos &&&&  respectively, 
we obtain the rolling conditions (9) and (10). 

 
3. Motion differential equations 
3.1. Lagrange function 

The Lagrange function is defined as the 
difference between the kinetic energy and the 
potential energy of the system, namely [2] 

( )
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 (11) 

where M – mass of the disk, zyx JJJ ,=  - its 

axial moments of inertia.  
 
3.2. Lagrange equations 

The equations of the rolling motion of the 
disk will be deducted with the help of the Lagrange 
function (11) and rolling conditions (9) and (10). 
They are as follows: 

ϕµ−ϕλ=ξ sincos&&M  (12) 

ϕµ+ϕλ=η cossin&&M  (13) 

( )

,sin

cossinsincos

sincoscos

2

2222
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(14) 

( ) ,coscossin2 θµ=θω+ϕθ aJJ
dt

d
zzx &  (15) 

( ) .aJ
dt

d
zz µ=ω  (16) 

Here, we have denoted by zω , the 

quantity θϕ+ψ cos&& . Altogether, we have seven 
equations: five equations (12)-(16), and the rolling 
conditions [3, 4]:  

,sinsincos θθ=ϕη+ϕξ &&& a  (17) 

.cossin zaω−=ϕη+ϕξ− &&  (18) 

The physical sense of the quantities µλ,  is 
obvious: from the equations (12) and (13) we get 

( ) ,sincos λ=ϕη+ϕξ &&&&M  (19) 

( ) ,cossin µ=ϕη+ϕξ− &&&&M  (20) 

in this respect, µλ,  represent the components of 

the reaction force in the contact point K, on the 
directions PO1 and yO ′1 .  

Now, it is easy to express µλ,  in terms of 
ψϕθ ,, and their derivatives; in this sense, from 

(17) and (18) we have 
( )

( ),cossin

cossinsincos
2θθ+θθ=

=ϕϕη+ϕξ−+ϕη+ϕξ
&&&

&&&&&&&

a
 (21) 

( )
.

sincoscossin

zaω−=
=ϕϕη+ϕξ−ϕη+ϕξ−

&

&&&&&&&

 (22) 

Considering the equations (17) – (20), we 
get 

( ),cossin 2 ϕω+θθ+θθ=λ &&&&
zMa  (23) 

( ).sin zMa ω−ϕθθ=µ &&&  (24) 

So, above, we have the expressions of the 
contact reaction components on the PO1 and 

yO ′1 directions. 
Now, replacing these expressions of λ and µ 

in the equations (14) and (16), and eliminating µ 
between (15) and (16), we find 

( )
( ) ,cossin

sincos

2

22
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 (25) 

( ) ,sin22 θϕθ=ω+ &&& MaMaJ zz  (26) 

( ) .sinsin2 θθω=θϕ && zzx JJ
dt

d
 (27) 

These three equations contain three 
unknowns: .,, zωϕθ    

Now, we can constitute two differential 
equations which will express zω and ϕ&  as 
functions of θ. Denoting θcos  by p, we can 
rewrite the equations (26) and (27) as 

( ) ,12 ϕ−=ω+ &

dp

d
k z  (28) 

( ){ } .21 2
zp

dp

d ω−=ϕ− &  (29) 

Here, we have denoted 2kMaJx = and 

.2 2kMaJz =  Eliminatingϕ& , we obtain 

( ) .0
12

2
1 2 =ω

+
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− z
z
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d
p

dt
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This differential Legendre equation 

determines zω  in function of p. The value of the 

coefficient 
12

2

+k
 is equal to 1 for a rim 
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(considered a circular material line), and to 
3

4
for a 

disk. Eliminating zω  from (28) and (29), we 
obtain 

( ) ζ
+

=ζ−
12

2
1

2

2
2

kdp

d
p , (31) 

where ζ is equal to ( )ϕ− &
21 p .  

 Finally, the differential equation (31) 

determines ζ, and ϕ&  consequently, as functions of p. 
 
3.3. Steady-state turning 

From the equation (25), we can obtain the 
conditions for the steady-state turning of the disk. 
That means the regulated precession, namely the 
motion in which the disk makes an angle α with 
the horizontal plane, and its centre describes a 
circle having the radius b, with the speed equal to 
bω.  

Of course, such a case may be considered 
only if any friction is neglected (ideal case), or the 
disk is driven by an engine. The latter case is 
exactly the case of a monowheel vehicle. 

In this steady-state turning, the value ϕ&  is 
equal to ω; here, the value ω is determined by the 
equation 

( ){ } ,cos12 2 α=ωα++ ctggkabk  (32) 

which can be easily deduced using the equality 
.ω=ω− ba z  

The presented calculi illustrate the way in 
which Lagrange equations can solve such a 
problem of non-holonomous systems. As one can 
see, this is entirely possible.  

Starting from these results, the authors 
decided to continue the study of the monowheel 
motion, making the necessary adaptations for this. 
First, the principal difference is that monowheel 
rolling part is not a disk, but only a circular rim 
and tyre. Further, the inner body of a monowheel 
does not participate to all three rotations that the 
rim can make simultaneously; in fact, this inner 
frame has only a relative rotation against the outer 
rim, in the plane of the last one. More precisely, its 
angular speed about the axis normal to plane of the 
wheel (Cy- axis, in Figure 3) is independent of the 
wheel angular speed.  

This study makes the object of another work 
presented in the same conference. 

 
 
 

4. Conclusions 
The monowheel vehicle is a system of 

bodies designed to transport one person on road, as 
well as off road. It differs from a motorcycle by the 
inside placement of the rider, as well as the great 
radius of the rolling wheel. This great diameter 
permits a good passing capacity over the off road 
irregularities and a small fuel consumption on the 
good road surfaces. 

Its small dimensions in breadth permits a 
good circulation on the agglomerated streets of 
modern towns, as well as an easy parking. 

Although at its beginning, the vehicle speed 
was very small, because the rider force drove them, 
after introducing gas engine motors the difficulties 
of maintaining the direction and stability were 
eliminated. Besides, they are very good means to 
take a ride during holidays. 

The present paper represents the 
introductory part in the study on the serious 
problem of the motion of such a vehicle. The 
difficulty is generated by its non-holonomous links 
with the road surface, as we already pointed out.  
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