

International Conference on Economic Engineering and Manufacturing Systems
Braşov, 24 – 25 November 2011

291

ACTUATORS AS MECHATRONICS OBJECTS FOR
MOTION SOFTWARE CONTROL

Aurel FRATU

Transilvania University of Brasov, Romania

Abstract. This paper presents the integration between the components hardware and the driven functions software,
resulting in integrated systems called intelligent mechatronic systems. Their development involves finding an optimal
balance between the basic mechanical structure, sensor and actuator implementation, automatics information processing
and control. A major importance is the simultaneous design of mechanics and electronics, hardware and software and
embedded control functions resulting in an integrated system.

Keywords: actuators, mechatronic objects, components integration, software control

1. Introduction

Mechatronics is the synergistic integration of
physical systems – sensors, actuators, electronics
and control systems, computers systems, from
beginning to end of the design process; thus
enabling complex decision making. Basis of this
integration process the design problems have been
transferred from the mechanical domain to the
electro and computer software domains.

Mechatronic system design deals with the
integrated design of a physical system, including
sensors, actuators, and embedded digital control
system. The integration is applied at both hardware
components and information, both on-line and off-
line.

2. Actuators for motion control systems
Actuators are most often found in motion

control systems. In these systems, the ultimate
objective is to drive the mechatronic system along
some reference trajectory. The role of the actuator
in such system is to establish the flow of power by
means of some control actions, in response to
process models or sensory data, so that the desired
trajectory is effectively accomplished.

One feasible way of changing the mechanical
state of a mechatronic system is through an
effective exchange of energy with its surroundings.
The exchange of energy can be accomplished by
active interaction with other systems. An actuator is
a device that modifies the mechanical state of a
mechatronic system with which it is coupled.

An actuator can be seen as a system that
establishes a flow of energy between an electrical
port and a mechanical port [1]. The actuator

converts some sort of input power into mechanical
power. The power exchanged between the input
ports and output ports will be completely defined by
two conjugate variables: an effort (force, torque,
voltage) and a flow (velocity, angular rate, current).

The use of electrical energy at the input port of
actuators has a lot of advantages:
1. Compatible energy domains. Most motion control

systems incorporate actuators which are
controlled electronically. In consequence, the
output energy nature of the control part is the
same with the energy nature existing at the input
actuator port.

2. Fast operation of electric devices. Electronic and
electric devices are characterized by fast
processes. Electrical processes are much faster
than the mechanical processes. This characteristic
improves the controllability of actuators.

3. Availability of components. The electronic
components used in the control systems are well-
known and easy obtainable.

In view of the above considerations, the
actuator concept that we will use throughout this
paper comprises both the electrical sub-system and
the mechanical sub-system.

3. The role of the actuator in an intelligent
control system
Motion control systems can be regarded as the

paradigm in the application of actuators [2]. The
main objective of a motion control system is to
drive the mechatronic system into work space.

Motion control systems drive the mechatronic
system according to the reference trajectory by
means of a combination of functions: sensing,

RECENT, Vol. 12, no. 3(33), November, 2011

292

processing and actuation. Some of these functions
may not be present in a particular motion control
system. The role of the different devices, in an
intelligent control system, is discussed in the
following paragraphs [3].

3.1. Sensing function

Sensors are devices that monitor the status of a
parameter of the mechatronic system. In a general
motion control scheme, the reference trajectory
must be compared to the actual one. Reactive
measures to counteract deviations can then be
implemented on the basis of this comparison.

The use of sensors in feedback control motion
systems provide means for improving the
robustness of the whole process. The sensors enable
the implementation of disturbance rejection
strategies. Feed-forward control schemes (sensor-
less) are susceptible of being affected both by
imprecision and by external and internal
disturbances. On the contrary, feedback schemes are
much more robust against external and internal
disturbances.

3.2. Processing function

The processing function in a motion control
system is done by the controller. The controller
provides the equivalent to the intelligence in a
control system. It usually receives the reference
trajectory as an input and computes the required
action to drive the mechatronic system according to
the reference trajectory.

The controller in feedback schemes obtains
information on the status of the mechatronic system
through sensors. On the basis of this information,
the deviation from the reference trajectory is
calculated and corrective actions implemented.

3.3. Actuation function

The actuator is the only obligatory component
of a motion control system. The actuator establishes
a flow of energy between the electrical and the
mechanical domains.

The function of the actuator is to impose a state
on the mechatronic system, ideally without being
affected by the load. The mechatronic system is
driven according to the reference trajectory, by
either increasing or decreasing her energy level.

4. Universal mechatronics objects

Mainly, one address mechatronic system as a
whole composition of subsystems which correspond
to the technical disciplines involved: mechanical,
electrical, control and software engineering.

Frequently, to design a mechatronic system is used
a team, where each member of the team is skilled in
a relevant discipline.

Given a functional specification for the system,
and an understanding of the issues involved, to
compose the system from subsystems can be
reasonably achieved by the appropriate expert. The
synergy between subsystems of the system is built
into the manner in which the system is composed
from individual subsystems.

Once a set of subsystems has been configured,
the fundamental problem remains of the specifying
the interfaces between subsystems. In research and
development projects, these integration and
interfacing issues become more prevalent and new
tools and methodologies will be needed to deal with
them.

In this paragraph, we present Universal
Mechatronic Objects (UMOs) tool for interfacing of
the subsystems [4]. These UMOs can be applied to
any mechatronic system to form the interface
between the electrical and the computer control
subsystems. By this means an effective software
control of the mechatronics systems can be built.

4.1. The electrical subsystem/control subsystem

interface
They are many researches focused upon the

interface between the electrical subsystem and the
control subsystem. The figure 1 illustrates the
various hardware and software layers involved. The
first software layer above the hardware consists of
device drivers which interact directly with the
computing hardware.

Figure 1. Layers of software for a mechatronic system

The device drivers are considered part of the

electrical subsystem because their development
requires intimate knowledge of how the actuators
and sensors are interfaced to the computing
hardware. The control developer will need to read
the sensors information and write the command to
the actuators.

RECENT, Vol. 12, no. 3(33), November, 2011

293

As can be seen in figure 1, mechatronics
objects are shown to be the interface between the
device drivers (i.e., the electrical subsystem) and the
control software (i.e., the control subsystem). Given
this arrangement, we analyse how we design the
mechatronics objects to encapsulate the access
functions for actuators and sensors so that the
device drivers are hidden from view of the control
developer.

Further, the application-specific details of the
control algorithms and application software are
hidden from view of the electrical developer.

The assembly of the mechatronics objects can
be accomplished by the team member responsible
for system integration, before either the electrical or
control developers begin their work. We propose
that by defining the boundary between the electrical
and control subsystems by the using of a standard
set of UMOs, the entire project will progress more
quickly, efficiently and reliably toward the desired
functional system realization.

4.2. Object oriented programming

An object oriented paradigm is appropriate for
the definition of the electrical/control subsystem
boundary. Object oriented programming, in contrast
with the traditional structured programming
methodologies is modular in a way which allows
the assembly of all variables and functions relating
to a concept. For example, an actuator (sensor) has
associated with it certain variables and functions
which all must be present for the programmer to use
it effectively, but which are not necessary if the
actuator (sensor) is not used.

The required variables, called member
variables, might include the actuator’s name, the
last value commanded to the actuator, and a
variable whose value indicates whether the actuator
is synchronous or asynchronous.

The required functions, called member
functions, might include an initialize function that
sets-up the actuator for use, a write function, and a
finalize function that is called when the program is
about to exit. In such a case, it is useful to
encapsulate these variables and functions into a
single module, called an object. An object that is
derived from a particular class is called an instance
of the class.

Object Oriented Programming (OOP) is a topic
of much programming books and progress in the
last years. The advantages of OOP, over more
traditional structured programming methods are by
now well documented.

Object oriented design can be implemented
using several different programming languages.
Borland DELPHI is the language of choice for most
of the literature that we have reviewed, because of
its many built-in features which facilitate OOP [5].

By application of the object oriented paradigm
the significant characteristics of actuators and
sensors can be mapped directly to member variables
and member functions of object classes in OOP.

In this paper, DELPHI language has been
designed to facilitate OOP with the built-in type
class. One advantage of the use of DELPHI and
OOP is the notion of inheritance. We can define a
class which encapsulates all of the member
variables and functions required for a wide
spectrum of actuators. The class is entirely
independent of any particular actuator. Then we can
derive an instance of the class for each particular
actuator in an intelligent system. Each of these
actuator objects will inherit the member variables
and functions of the parent class with no additional
coding.

The modularity enforced through the
application of OOP allows software to be
constructed so that improvements can be
implemented through local modifications only.
Thus for example, if changes are made to the device
driver code, no changes will be necessary in the
control code and vice versa.

Moreover, because the programming objects
relate directly with the actual system components
(i.e., actuators and sensors), no new abstract
concepts need to be mastered. Further benefits will
add if UMOs are applied consistently across
multiple projects incorporating a wide variety of
hardware, because control software from one
project can be voluntarily reused on another project.

For the realization of industrial control systems,
one can promote the application of the object-
oriented paradigm to all phases of control system
development, including functional specification,
design and implementation. One can elucidate the
application of object oriented formalism in
translating verbal system specifications into object
definitions at a high level of abstraction. This
approach addresses universal actuators and sensors.

Another approach applies the object oriented
paradigm to the development phases of a real-time
industrial automation application. His assignment of
physical equipment to software objects
encompasses the lowest levels including individual
actuators and sensors [6].

RECENT, Vol. 12, no. 3(33), November, 2011

294

4.3. Case study - a robotic arm driving an object
in a virtual environment
In a motion control system, the actuation

function is accomplished by the actuators. As usual
applications for these mechatronics systems are give
in figure 2, as example a gripper system and a robot
joint, which incorporate both: electrical and
mechanical elements.

 a) b)
Figure 2. Actuators system for a gripper system (a) and

a robot joint (b)

A software control system, with actuators as
mechatronics objects, can be illustrated in a robotic
application. In this application a robotic arm,
equipped with actuators, drives a virtual object.

The robotic arm, presented in figure 3, is
equipped with the owned sensors system.

Figure 3. Virtual robotic arm driving a virtual object

The robot’s actuators can impose an effort

(force) on the manipulated object. However, the
velocity of the robotic arm will be determined by
the inertial characteristics of the mass. Here, the
mass is acting as admittance; it receives an effort
and determines the velocity. According to the
principle of causality, the action of the motion
control system on the robotic arm, viewed as a
whole, must accept a flow (velocity) and imposes
an effort (force or torque) [7].

5. Conclusions
Actuators are memory-mapped inside the

computer and thus accessed by reading and / or
writing to memory locations. For this description,
there is a great arrangement of commonality at this
level of abstraction.

The OOP serve as a common basis for the
controller design. The OOP based on UMOs
concept has to be taken into account within the
synthesis task of the motion control systems.

In most of the control applications only some
state variables are measurable and seldom are some
signals corrupted by noise. In these situations the
actuators have a limited accuracy, and some
parameters are only known inaccurately or are even
varying slowly. For this reason the OOP serve as
informatics tool to adjustment the mechatronics
systems accuracy.

References
1. Zupan, M., Ashby, M., Fleck, N. (2002) Actuator

classification and selection - the development of a
database. Journal of Advanced Engineering Materials, Vol.
4, No. 12, 2002 (July 2007), p. 933-940, ISSN 0309-7420

2. Fujita, K., Akagi, S. (1995) A Framework for Component
Layout and Geometry Design of Mechanical Systems:
Configuration Network and its Viewing Control.
Proceedings of the Design Engineering Technical
Conferences, p. 515-522, ISBN 9780791849040, 1995,
ASME Publishing House, Boston, USA

3. Rzevski, G. (2003) On Conceptual Design of Intelligent
Mechatronic Systems. Journal of Mechatronics, Vol. 13,
No. 10 (December 2003), p. 1029-1044, ISSN 0957-4158

4. Patrick, F., Muir, M., Horner, J. (1998) Mechatronic objects
for real-time control software development. Proceedings of
the 1998 SPIE International Symposium on Intelligent
Systems and Advanced Manufacturing: Mechatronics
Conference, Editor, p. 251-265, ISBN 9780819429797,
November 1998, Boston, USA

5. Auslander, D.M., Ridgely, J.R., Ringgenberg, J.D. (2002)
Control Software for Mechanical Systems: Object-Oriented
Design in a Real-Time World. Prentice Hall Publishing
House, ISBN-13 978-0-13-786302-0, Boston, USA

6. Fratu, A., Fratu, M. (2008) Programarea vizuală în mediul
Delphi cu aplicaŃii în robotică (Visual programming in
Delphi environment with applications in robotics).
Transilvania University Publishing House, ISBN 978-973-
598-315- 4, Braşov, Romania

7. Stacey, M.K. et al.: Intelligent Support for Conceptual
Design: A Flow Modelling Approach. Proceedings of
International Conference on Engineering Design – ICED11,
p. 261-266, 1997, Tampere, Finland

