TRACKING CONTROL OF ROBOTIC MULTI-BODY SYSTEMS
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Abstract. This paper presents a simple methodology for nltgithe entire set of continuous controllers taise a
nonlinear dynamical system to exactly track a giweajectory. The trajectory is provided as a setalgfebraic
differential equations that may or may not be eihyi dependent on time. The method provided ipiesl by results
from analytical dynamics and the close connectietwben nonlinear control and analytical dynamiosxjslored. The
results provided in this paper here yield new axglieit methods for the control of highly nonlinesystems. The paper
is based on previous work of the authors.
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1. Introduction command at joints level. Motion control of robot
The main specifically properties in the motion arm accomplishes the following functions:
control of the robots systems are the complexity of* to find of the corresponding movements in joints;
the dynamics and uncertainties, both parametric anel to generate of control signals for the actuators t
dynamic. Parametric uncertainties arise from produce the input torques;
imprecise knowledge of kinematics parameters and to synthesize of programmed paths.
inertia parameters, while dynamic uncertainties  For trajectory tracking, the computed reference
arise from joint and link flexibility, actuator trajectory is then presented to the controller, seho
dynamics, friction, sensor noise and unknownfunction is to cause the robot to track the given
environment dynamics. trajectory as closely as possible. For design ef th
Robot's motion trajectories are typically tracking controller, we assume that the reference
specified in the task space in the terms of the tim trajectory and path have been pre-computed.
history of the end-effector’s position, velocitiasd Control of robot manipulators is naturally
acceleration. Operational space (also known as taskchieved in the joint space, since the control inpu
space) is the space in which high-level motion andare joint torques. Nevertheless, the user spedifies
force commands are issued and executed. Theotion in the task space, and thus it is important
operational-space  formulation is  therefore extend the control problem to the task space. This
particularly useful in the context of motion and can be achieved by different strategies. The more
force control systems. On the other hand, in thenatural strategy consists of inverting the kineosati
joint space control methods, is assumed that thef the manipulator to compute the joint motion
reference trajectory is available in terms of iheet  corresponding to the given end-effectors motion.
history of joints positions and orientations of obb Thus, the methods used to date primarily rely
arm. on linearization and/or PID-type control, and they
The natural strategy to achieve task spacgosit assumptions on the structure of the control
control goes through two successive stages: effort.
* in the first stage, the robot’s kinematics in thgk
space variables is passed into the kinematic®. Control of nonlinear dynamical systems

corresponding joint space variables, and then; Most physical robotic systems are inherently
* in the second stage is designed the control in thaonlinear. Thus, control of nonlinear systems is a
joint space. subject of active research and increasing interest.

Because of the complexity of both the However, most controller design techniques for
kinematics and dynamics of the manipulator and ohonlinear systems are not systematic and/or apply
the task to be carried out, the motion controlonly to very specific cases. The most general tesul
problem is generally decomposed into three stages:available for nonlinear processes relate to scesari

* motion planning, in which:
* trajectory generation, e all uncertainty is parametric with a known
* trajectory tracking. functional dependence of the state-space model

The main problem of motion robot control is to  with respect to the unknown parameter, and
generate the motion in the task space with a givem there is no measurement noise nor disturbances.
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Under these admittedly restrictive assumptionghe robotic systems.
the results available are quite general. For each In the robotics literature [4, 6, 7], trajectory
possible value of the parameter, one needs to knowvacking using inverse dynamics and model
how to design a (non-adaptive) controller thatreference control has been used for some time now,
would stabilize the process if the parameter valuend the methods developed therein can be seen as
was known. Such controller should be able toparticular subclasses of the formulation discussed
guarantee input-to-state stability with respecato the present paper. Trajectory tracking in the
appropriately introduced disturbance. For eachadaptive control context (which is not the subjgfct
value of the parameter, one needs to know how tthis paper) has also been explored together with
design a (non-adaptive) output estimator for thespecific parameterizations to guarantee linearity i
process that would converge to the process output the unknown parameters of a system [5].
the parameter value was known. This is a trivial
matter when the whole state of the process can b8. Controllersthat cause a robotic system to
measured, but can still be challenging for nonlinea  track a given trajectory
SyStemS for which the state cannot be measured. This paper takes a genera"y different approach

The main challenge that remains open in thehat is based on recent results from analytical
supervisory control of nonlinear systems isdynamics. Here the complete nonlinear problem is
robustness with respect to disturbances. AlthOUghaddressed with no assumptions on the type of
the algorithms appear to work well in the presenceontroller that is to be used, except that it Wil
of disturbances, few stability results are avadabl  continuous.

There are few systematic procedures to design  One considers the robot dynamics model, given

controllers/estimators for nonlinear systems that a py the joint-space formulation, usually presented i
robust with respect to disturbances. In additionthe canonical forms:

there are also few results to analyze the closeg-lo M(g,)d+C(,a) +9(q) = (1)

switched nonlinear systems that arise as ONgy js annxn symmetric, positive-definite matrix and

SW't((::hes among different controllers.h dosiqn’s Called the generalized, or joint-space, inertia
urrent systemgtlc approach to es'gnmatrix, C is annxn matrix such thatCq is the
controllers for nonlinear systems is feedback

linearization. The basic idea of this techniqueois vector_ of Coriolis and . centrifugal terms -
design a control law that cancels the nonlinearitie pollectwely known as_velocny produt#rms- andy
of the plant and yields a closed-loop system with'S the vecto_r of graylty terms. More terms can be
linear dynamics. However, the technique is notadOIed to th'.s equation, as reqmred, to account for
robust to disturbances and uncertainties in thetrob other dynamical effect§ (e.g., viscous friction).
parameters, can yield to uncontrolled dynamics 1h€ symbolsg, g, ¢, and T denote n-
called zero dynamics and can only be applied t#limensional vectors of joint position, velocity,
systems verifying certain vector field relations acceleration and effort variables respectively, iwhe
The development of controllers for nonlinear N is the number of degrees of motion freedom
complex systems has been an area of intenséoF) of the robot mechanism.
research. Many controllers that have been This equation shows the functional
developed for trajectory tracking of complex dependencies explicitli is a function ofg, C is a
nonlinear and multi-body systems rely on somefunction of g andj, and so on. Once these
approximations and/or linearization [2]. Most dependencies are understood, they are usuallyeomitt
control designs restrict controllers for nonlinear Consider an unconstrained nonlinear
systems to be affine in the control inputs [3].6Dft mechanical robot system described by the second
the system equations are linearized about therder differential equation of motion:

system’s nominal trajectory and then the linearized M(g,1)§ = Q(@,&,t)
equations are used along with various results from o o 2)
the well-developed theories of linear control. a0 =do a0)=do

While this often works well in many situations, where, q(t) is the n-vector i by 1 vector) of
there are some situations in which better contr®lle generalized coordinates of the robot witBoF; the
may be needed. This is especially so when highlyiots indicate differentiation with respect to time;
accurate trajectory tracking is required to be dane and the matrixVi(q, t) is a positive definita by n
real time on systems that are highly nonlinear suclknatrix.

174



RECENT, Vol. 13, no. 2(35), July, 2012

Equations (1) and (2) can be obtained usingvitch can be viewed as the deviation of the
Lagrangean model. Tha-vector Q on the right acceleration of the controlled system from that of
hand sideof equation (2) is a ‘known’ vector in the the uncontrolled system.
sense that it is a known function of its arguments.  From equation (5), one obtains the expression:
By ‘unconstrained’ one means that the components g=a+q, (8)

of the initial velocity(y of the robot system can be One now differentiates equation (3) twice with
independently assigned. respect to time, and equation (4) once with respect
By ‘unconstrained’ one mean here that the to time, giving the set of equations
coordinatesq are independent of one another, or A(.9,1)4=b(q,q.t) (9)
are to be treated as being independent of each othewhereA is anm by n matrix of rankk andb is an
Suppose further that the unconstrained systemm-vector. With equations (6) and (8) equation (9)
iS now subjected to tha constraints. can be further expressed as [1]:
One requires that this mechanical system be B(@.4,)4. =b(,4.t) (10)

contrqlled so that it tral_cks a tr_ajectory that is\yhereB is anm by n matrix who is calculated by
described by the following consistent set of 4 expression:

equations:

i ®@yH=0 i=1-h 3) B@a.HG: =A@ )IN 2 @M@ (1)

One can now express the accelerationgctor

¥, (q,,6)=0 i=h+1---m (4) g in terms of its orthogonal projections on the
One assumes that the mechanical robof@nge space @' and the null space &, so that:
system’s initial conditions are such as to satisfy §=B"B § +(1-B'B)j (12)
these relations at the initial time. The latter skt
equations, which are non-integrable, is non-
holonomic.

In order to control the system so that it exactly
tracks the required trajectory i.e. satisfies eiquat
(3) and (4) one must apply an appropriate contro
n-vector Q. (,4,t) so that the equation of motion of | =BgBs+(1 ~BgBg).

and

In equation (12), the matriB* denotes the
Moore—Penrose generalized inverse of the m&trix
It should be noted that equation (12) is a general
identity that is always valid since it arises frone
prthogonal partition of the identity matrix

the controlled system becomes Using equation (10) in the first member on the
M(@,1)d = Q(@,.t) + Qe (@Gt right hand sidef equation (12), and equation (8) to
_ o (5)  replaceq in the second member, one gets:
a@=a0 a0 =9
where now, the components of therectorsq, and §=B'b+(I -B'B)@+d) (13)
(o satisfy equations (3) and (4) at the initial time’which, owing to equation (7), yields:

t=0. th x —pt(h_
Throughout this paper, one shall, for brevity, B'B g.=B (b-B3) (14)
drop the arguments of the various quantities, snles  The general solution of the linear set of
needed for clarity. equations (14) is given by [1]:
The controlled system is described by the . _ p+myvtr+_ oot
relation (5), wher&). is the control matrix. Gc=(B'B)'B (b-Ba+[-(B'B) BB (15
One begins by expressing equation (5) in terms  After any combination one obtains the second
of the weighted accelerations of the system. Tcequality:
control a mechanical system described by equation 4.=B*(b—-Ba) +(1 -B*B)z 16
(2), so it exactly satisfies the trajectory desediliy Ge (b-Ba)+( . _) ( )
the requirements (3) and (4) by choosing thewhere the n-vector z(Q,q,t) is any arbitrary
weighting matrix to be any positive - definiteby n n-vector. To obtain the second equality above, one

matrix: N(q,t)=M (qg,t) . used the property tha8"B)" =(B*B) in the two
One denotes the acceleration of themembers on the right hand side along, with the
uncontrolled system by: property so thaB'BB" =B .
a(@.9.t) =M @.)Q(a.a.t) - (6) The set of all possible controlg,(q,q,t) (or
In equation (4), one identifies the expression:  controllers) that causes the controlled system to
e (@,0,t) =M ~H(q,)Qc (a,4,1) (7)  exactly track the required trajectory is explicitly
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The explicit closed-form expression (17)
provides the entire set of continuous tracking
controllers that can exactly track a given trajecto
description, assuming that the system’s initial
conditions satisfy the description of the trajegtor
The explicit closed-form expressions for the
controllers can be computed in real time.

Closed-form expressions for all the continuous
controllers required for trajectory tracking for
nonlinear systems do not make approximations.
Furthermore, no approximations or linearization are
made here with respect to the trajectory that isgoe
tracked, which may be described in terms of
nonlinear algebraic equations or nonlinear
differential equations. Moreover, the approach
arrives not just at one nonlinear controller for
controlling a given nonlinear system, but alschat t
entire set of continuous controllers that wouldssau
a given set of trajectory descriptions to be eyactl
satisfied.
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