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Abstract. This paper deals with the simulation of a dynamical system in which the motion of each rigid robot is subject 
to the influence of virtual forces induced by geometric constraints. These constraints may impose joint connectivity and 
angle limits for articulated robots, spatial relationships between multiple collaborative robots, or have a robot follow an 
estimated path to perform certain tasks in a cycle. In this paper the author give a brief overview of a general simulation 
framework, describing the primary tasks which a simulator needs to implement. The robot behavioural simulation in the 
virtual environment enables us to predict the behaviour of a given real manipulator into real environment. 
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1. Introduction 

The main specifically properties in the motion 
control of the robots systems are the complexity of 
the dynamics and uncertainties, both parametric and 
dynamic. Parametric uncertainties arise from 
imprecise knowledge of kinematics parameters and 
inertia parameters, while dynamic uncertainties 
arise from joint and link flexibility, actuator 
dynamics, friction, sensor noise and unknown 
environment dynamics. 

In this paper, the author proposes a new motion 
planning algorithm for virtual prototyping. This 
algorithmic structure is inspired by constrained 
dynamics in physically-based modelling. 

The author seeks to deduce a virtual geometry 
of the objects; as such a 3D geometric realization of 
a collection of rigid bodies is visible in the drawing. 
One transforms the motion planning problem into a 
dynamical system simulation by treating each robot 
as a rigid body or a collection of rigid bodies 
moving under the influence of all types of constraint 
forces in the virtual prototyping environment.  

These may include constraints to enforce joint 
connectivity and angle limits for articulated robots, 
constraints to enforce a spatial relationship between 
multiple collaborative robots, constraints to avoid 
obstacles and self-collision, or constraints to have 
the robot follow an estimated path to perform 
certain tasks in a cycle. 

The author demonstrates the effectiveness of 
this structure for the problem of virtual assembly 
prototyping with applications in assembly line 
planning. 

 
2. Algorithm for analytical simulation 

In simulation studies, the author need to 
integrate the system of ordinary differential 
equations (ODE) describing the dynamics of a 
robotic mechanical system. 

The author uses a model relating the state of the 
system with its external generalized forces of the 
form: 

),( uxx f=& , (1) 

where x is the state vector, u is the input or control 
vector, x0 is the state vector at a certain time t0, and 
f(x, u) is a nonlinear function of x and u, derived 
from the dynamics of the system. 

The state of a dynamical system is defined, in 
turn, as the set of variables that separate the past 
from the future of the system. Thus, if one take t0 as 
the present time, one van predicts from eq. (1) the 
future states of the system upon integration of the 
initial-value problem at hand, even if one do not 
know the complete past history of the system in full 
detail.  

Now, if one regards the vector θ of independent 

joint variables and its time-rate of change, θ&  as the 
vectors of generalized coordinates and generalized 
speeds, then an obvious definition of x is: 

[ ]TTT
θθx &= . (2) 

The n generalized coordinates, θ define the 
configuration of the system, while their time-
derivatives determine its generalized momentum. 

Hence, knowing θ and θ&  can predict the future 
values of these variables with the aid of eq. (1). 

The author use the mathematical model, eq. (1), 
explicitly, as pertaining to the serial manipulators, 
in terms of the kinematic structure of the system 
and its inertial properties, i.e., the mass, mass-centre 
coordinates, and inertia matrix of each of its bodies. 
To this end, the author first writes the underlying 
system of dynamical equations for each link. We 
have n + 1 links numbered from 0 to n, which are 
coupled by n kinematic pairs.  

The following step of this derivation consists in 
representing the coupling between every two 
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consecutive links as a linear homogeneous system 
of algebraic equations on the link twists. Moreover, 
all kinematic pairs allow a relative one-degree-of-
freedom motion between the coupled bodies. It can 
then express the kinematic constraints of the system 
in linear homogeneous form [1]. 

The procedure whereby the motion of the 
manipulator is determined from initial conditions 
and applied torques τ(t) and loads, is known as 
simulation. 

Since the author start with a second-order  
n-dimensional nonlinear ODE system in the joint 
variables of the manipulator, the authors have to 
integrate this system in order to determine the time-
histories of all joint variables grouped in the joint 
variables vector, θ.  

With current software available, this task has 
become routine work, the user being freed from the 
quite demanding task of writing code for integrating 
systems of ODE. The implementation of the 
simulation-related algorithms is possible with the 
available commercial software packages. 

As a rule, simulation code requires that the user 
supply a state-variable model of the form (eq. (1)) 
of the robot dynamic model, with the state-variable 
vector, x and the input or control vector u, defined 
as: 

( ) ( )tt τu =   (3) 

With the above definitions, then the authors can 
write the state-variable equations, in the form of eq. 
(1), with f(x, τ) thereby obtaining a system of 2n 
first-order ODE in the state-variable vector.  

Various methods are available to solve the 
resulting initial-value problem, all of them being 
based on a discrimination of the time variable. If the 
behaviour of the system is desired in the interval  
t0 ≤ t ≤ tF, then the software implementing this 
algorithm provides approximations {yk}

N to the 
state-variable vector kkt xx =)( , and the value of 
torques τ(tk) at a discrete set of instants{tk}.  

The variety of methods available to solve the 
underlying initial-value problem can be classified 
into two main categories, explicit methods and 
implicit methods. The former provide yk explicitly 
in terms of previously computed values. On the 
contrary, implicit methods provide yk in terms of 
previously computed values and itself.  

Commercial software for scientific 
computations provides routines for both implicit 
and explicit methods, the user having to decide 
which method to invoke. 

 

3. Plausible robot’s motion simulation 
The robots’ motion should be animated with 

the highest degree of realism possible using motion 
capture data or accurate full-body simulation, while 
the multitudes secondary details to the auxiliary 
elements (scene, cameras etc.) can be simulated at 
much lower fidelity.  

The classic robot motion problem, also referred 
to as the Piano Mover’s problem, can be stated as 
the following: given a robot R and a workspace W, 
find a path from an initial configuration I to a goal 
configuration G, such that R never collides with any 
obstacle Oi from a set of obstacles O along the path 
P, if such a path exists.  

The path P is a continuous sequence of 
positions and orientations of R. Continuous 
sequences of positions and orientations of R are 
assimilated with the robot system animation on a 
virtual scene. 

Despite the exciting progress in the field, 
simulating a dynamical system with many degrees 
of freedom remains a computational challenge. One 
of the central components of any control or 
simulation system for articulated bodies is forward 
dynamics [2].  

Forward dynamics computes the acceleration 
and the resulting motion of each link, based on the 
given set of external forces and active joint forces. 
The known algorithms have a linear-time 
dependence of the number of degrees of freedom. 
This permits any object in a scene to behave in a 
physically-plausible way: they accelerate, recognize 
collisions, and respond to collisions much like one 
would expect it to respond.  

Several techniques have been proposed for 
accelerating various types of dynamic simulation. 
Yet, there exists no known general algorithm for 
automatic simulation of articulated body dynamics. 

In [3] Barzel introduced the idea of “plausible” 
motion, i.e. motion that could happen and look 
physically plausible to the viewers. For many visual 
applications or real-time interaction, accurately 
simulating all the details of the real environment is 
not necessary [4]. 

In fact, it is often sufficient to provide effective 
motion to make the scene appear more realistic, 
without committing much computational resources.  

In an environment with uncertainty, one 
generally expects that a constrained problem to 
have multiple solutions. It is difficult to know 
before what solutions are available. Proposed 
constraint-based planning structure has the 
following characteristics: 
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• It can handle both static environments with 
complete geometric information or dynamic 
scenes with moving obstacles whose motion is 
not known a priori. 

• It is applicable to both rigid and articulated 
robots of arbitrarily high degrees of freedom, as 
well as multiple collaborative agents.  

• It allows specification of various types of 
geometric constraints. 

• It runs in real time for modestly complex 
environments. 

Hence, it is bad to use a solution strategy that 
seeks a single answer; rather, it prefers a technique 
that produces many solutions that reflect the range 
of possible outcomes. While for feature animation a 
user is expected to choose the one animation they 
prefer, other applications benefit directly from 
multiple solutions: 
• Computer simulator designers can use different 

animations each time a simulation is on stage, 
making it less predictable and potentially more 
entertaining. 

• Training environments can present trainees with 
multiple physically consistent scenarios that 
reflect the physics and variety of the real world. 

The author generates multiple animations that 
satisfy constraints by applying an original algorithm 
to trial from a randomized model. The algorithm 
needs the model of the environment, including the 
sources of uncertainty and the simulator that will 
generate an animation in the virtual environment. 

The algorithm described in this paper generates 
an arbitrarily sequence of animations in which 
“good” animations are expected to appear.  

Generating motions for real or virtual agents, 
which are coupled to a goal or task, is usually a 
complicated task. A wide variety of approaches and 
methodologies have been proposed to attempt the 
problem [5]. In most cases, these solutions can be 
viewed as "search" algorithms, where one tray to find 
a way to the goal through some space representative 
for the problem. Each search space is tailored to the 
problem itself, which allows for an extremely wide 
variety of extensions, applications, and even 
interpretations of the basic motion planning problem 
[6]. The solution is to utilize the simulation to relax 
the requirement of precise control of many degrees 
of freedom, and instead allow the agents or their 
parts to move toward the goal through the use of 
artificial forces acting on the agents.  

Control, when needed, is gained through 
integration of these forces with simplified paths 
through the search domain [7]. One can shows that 

an animation framework can overcome many of the 
limitations of prior approaches and show how it can 
be used in a variety of application including hyper-
redundant robots [8]. For example, consider a team 
of robotic arms on a manufacturing assembly line 
whose task is to simultaneously assembly an 
automobile.  

Each arm would need several joints in order to 
effectively articulate itself to be able to cover any 
part of the vehicle. The individual arms must move 
themselves to precise locations along the 
automobile's body while also avoiding collisions 
with other arms, the car and other parts of the 
assembly line.  

However, in many cases where the goal is only 
to have a mass that moves around, motion planning 
and simulation algorithms could be used to 
determine this locomotion and to provide goals for 
each agent. They share a set of rules govern their 
motion.  

Equations for robot dynamics, can model the 
agent's physical properties, how it interacts with its 
neighbours, and in which direction it should 
proceed next. Furthermore, if the vehicle or its parts 
are moving along the assembly belt, then, their end-
effectors must accurately move with the item in a 
prescribed manner. To automate this process, 
algorithms must be able to quickly determine the 
sequence, or collectively a path, of joint angles that 
each arm must follow to both reach the piece. 
Finally, it needs a motion controller to execute that 
sequences. 

 
4. Application to prototyping 

Below the author discuss a few issues 
pertaining to the implementation of the simulation-
related algorithms available in commercial software 
packages.  

The algorithm was implemented with DELPHI 
object-oriented programming language. The author  
used in-house library ANIMATION-VIEW for 
collision detection by generating of the distance 
fields for surface repulsion constraints.  

Platform’ toolbox offers the Delphi functions 
for the implementation of the virtual system 
prototypes. For discrete set {tk} of instants, Delphi 
system generates an images sequence of the virtual 
robot system.  
The author has tested the proposed motion planning 
system for a robotic assembly line. An animation 
generated from this type of scenario is shown in 
Figure 1. 
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Figure 1. Car manufacturing plant - robotic assembly line 

 
With respect to dynamic obstacles, fast moving 

obstacles may still collide with a robot since the 
robots may not always have enough time to react. A 
velocity-bias also helps with this situation, by 
essentially projecting the moving obstacle forward 
in time to a position which a robot can reason about. 
This situation can also usually be overcome by 
placing velocity-limits on the obstacles or otherwise 
correcting the local avoidance parameters. 

Regarding parameters, many of the simulation 
components require correction of parameters to 
have a realistic and stable simulation. Some 
algorithms exist which can auto-time some of these 
parameters, but to the best of our knowledge no 
approach does this well in a generic manner. 

 
5. Conclusions 

The author has reformulated the motion 
planning problem into a virtual simulation problem, 
where constraints on the robot’s motion guide it 
from its starting configuration to its target, on the 
virtual scene. Virtual reality developers can 
populate their environments with many agents each 
of which have their own goal, task, or behaviours.  

The avoidance of collision, the following of 
estimated paths, and many other possible 
relationships between the cooperative robots and 
objects on the scene, are feasible in the virtual 
environment. An animator could solve this task by 
carefully moving each agent through the scene.  

An algorithm can precisely control all aspects 
of the situation, or it can employ a predetermined 
set of laws or rules which influence the motion and 
behaviour. It is known that there are a wide variety 
of technical challenges at both ends of this 

spectrum, resulting in consideration attention from 
the related research communities. With precise 
control, it has been shown that the time required 
finding a solution grows intractably as the 
complexity of the planning problem, the underlying 
robot, or the scene increases. 

The models proposed by author arise naturally 
in the virtual environment and provide a means of 
verifying the plausibility of the motion in the real 
environment. With further work it should be 
possible to experimentally obtain more accurate 
robot dynamically models who require finding good 
animation. 
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