

279

SIMULATION OF THE ROBOT SYSTEMS
FOR VIRTUAL PROTOTYPING IN ASSEMBLY OPERATIONS

Aurel FRATU

Transilvania University of Brasov, Romania

Abstract. This paper deals with the simulation of a dynamical system in which the motion of each rigid robot is subject
to the influence of virtual forces induced by geometric constraints. These constraints may impose joint connectivity and
angle limits for articulated robots, spatial relationships between multiple collaborative robots, or have a robot follow an
estimated path to perform certain tasks in a cycle. In this paper the author give a brief overview of a general simulation
framework, describing the primary tasks which a simulator needs to implement. The robot behavioural simulation in the
virtual environment enables us to predict the behaviour of a given real manipulator into real environment.

Keywords: virtual prototype, virtual assembly, estimated path, multi-body systems

1. Introduction

The main specifically properties in the motion
control of the robots systems are the complexity of
the dynamics and uncertainties, both parametric and
dynamic. Parametric uncertainties arise from
imprecise knowledge of kinematics parameters and
inertia parameters, while dynamic uncertainties
arise from joint and link flexibility, actuator
dynamics, friction, sensor noise and unknown
environment dynamics.

In this paper, the author proposes a new motion
planning algorithm for virtual prototyping. This
algorithmic structure is inspired by constrained
dynamics in physically-based modelling.

The author seeks to deduce a virtual geometry
of the objects; as such a 3D geometric realization of
a collection of rigid bodies is visible in the drawing.
One transforms the motion planning problem into a
dynamical system simulation by treating each robot
as a rigid body or a collection of rigid bodies
moving under the influence of all types of constraint
forces in the virtual prototyping environment.

These may include constraints to enforce joint
connectivity and angle limits for articulated robots,
constraints to enforce a spatial relationship between
multiple collaborative robots, constraints to avoid
obstacles and self-collision, or constraints to have
the robot follow an estimated path to perform
certain tasks in a cycle.

The author demonstrates the effectiveness of
this structure for the problem of virtual assembly
prototyping with applications in assembly line
planning.

2. Algorithm for analytical simulation

In simulation studies, the author need to
integrate the system of ordinary differential
equations (ODE) describing the dynamics of a
robotic mechanical system.

The author uses a model relating the state of the
system with its external generalized forces of the
form:

),(uxx f=& , (1)

where x is the state vector, u is the input or control
vector, x0 is the state vector at a certain time t0, and
f(x, u) is a nonlinear function of x and u, derived
from the dynamics of the system.

The state of a dynamical system is defined, in
turn, as the set of variables that separate the past
from the future of the system. Thus, if one take t0 as
the present time, one van predicts from eq. (1) the
future states of the system upon integration of the
initial-value problem at hand, even if one do not
know the complete past history of the system in full
detail.

Now, if one regards the vector θ of independent

joint variables and its time-rate of change, θ& as the
vectors of generalized coordinates and generalized
speeds, then an obvious definition of x is:

[]TTT
θθx &= . (2)

The n generalized coordinates, θ define the
configuration of the system, while their time-
derivatives determine its generalized momentum.

Hence, knowing θ and θ& can predict the future
values of these variables with the aid of eq. (1).

The author use the mathematical model, eq. (1),
explicitly, as pertaining to the serial manipulators,
in terms of the kinematic structure of the system
and its inertial properties, i.e., the mass, mass-centre
coordinates, and inertia matrix of each of its bodies.
To this end, the author first writes the underlying
system of dynamical equations for each link. We
have n + 1 links numbered from 0 to n, which are
coupled by n kinematic pairs.

The following step of this derivation consists in
representing the coupling between every two

RECENT, Vol. 13, no. 3(36), November, 2012

280

consecutive links as a linear homogeneous system
of algebraic equations on the link twists. Moreover,
all kinematic pairs allow a relative one-degree-of-
freedom motion between the coupled bodies. It can
then express the kinematic constraints of the system
in linear homogeneous form [1].

The procedure whereby the motion of the
manipulator is determined from initial conditions
and applied torques τ(t) and loads, is known as
simulation.

Since the author start with a second-order
n-dimensional nonlinear ODE system in the joint
variables of the manipulator, the authors have to
integrate this system in order to determine the time-
histories of all joint variables grouped in the joint
variables vector, θ.

With current software available, this task has
become routine work, the user being freed from the
quite demanding task of writing code for integrating
systems of ODE. The implementation of the
simulation-related algorithms is possible with the
available commercial software packages.

As a rule, simulation code requires that the user
supply a state-variable model of the form (eq. (1))
of the robot dynamic model, with the state-variable
vector, x and the input or control vector u, defined
as:

() ()tt τu = (3)

With the above definitions, then the authors can
write the state-variable equations, in the form of eq.
(1), with f(x, τ) thereby obtaining a system of 2n
first-order ODE in the state-variable vector.

Various methods are available to solve the
resulting initial-value problem, all of them being
based on a discrimination of the time variable. If the
behaviour of the system is desired in the interval
t0 ≤ t ≤ tF, then the software implementing this
algorithm provides approximations {yk}

N to the
state-variable vector kkt xx =)(, and the value of
torques τ(tk) at a discrete set of instants{tk}.

The variety of methods available to solve the
underlying initial-value problem can be classified
into two main categories, explicit methods and
implicit methods. The former provide yk explicitly
in terms of previously computed values. On the
contrary, implicit methods provide yk in terms of
previously computed values and itself.

Commercial software for scientific
computations provides routines for both implicit
and explicit methods, the user having to decide
which method to invoke.

3. Plausible robot’s motion simulation
The robots’ motion should be animated with

the highest degree of realism possible using motion
capture data or accurate full-body simulation, while
the multitudes secondary details to the auxiliary
elements (scene, cameras etc.) can be simulated at
much lower fidelity.

The classic robot motion problem, also referred
to as the Piano Mover’s problem, can be stated as
the following: given a robot R and a workspace W,
find a path from an initial configuration I to a goal
configuration G, such that R never collides with any
obstacle Oi from a set of obstacles O along the path
P, if such a path exists.

The path P is a continuous sequence of
positions and orientations of R. Continuous
sequences of positions and orientations of R are
assimilated with the robot system animation on a
virtual scene.

Despite the exciting progress in the field,
simulating a dynamical system with many degrees
of freedom remains a computational challenge. One
of the central components of any control or
simulation system for articulated bodies is forward
dynamics [2].

Forward dynamics computes the acceleration
and the resulting motion of each link, based on the
given set of external forces and active joint forces.
The known algorithms have a linear-time
dependence of the number of degrees of freedom.
This permits any object in a scene to behave in a
physically-plausible way: they accelerate, recognize
collisions, and respond to collisions much like one
would expect it to respond.

Several techniques have been proposed for
accelerating various types of dynamic simulation.
Yet, there exists no known general algorithm for
automatic simulation of articulated body dynamics.

In [3] Barzel introduced the idea of “plausible”
motion, i.e. motion that could happen and look
physically plausible to the viewers. For many visual
applications or real-time interaction, accurately
simulating all the details of the real environment is
not necessary [4].

In fact, it is often sufficient to provide effective
motion to make the scene appear more realistic,
without committing much computational resources.

In an environment with uncertainty, one
generally expects that a constrained problem to
have multiple solutions. It is difficult to know
before what solutions are available. Proposed
constraint-based planning structure has the
following characteristics:

RECENT, Vol. 13, no. 3(36), November, 2012

281

• It can handle both static environments with
complete geometric information or dynamic
scenes with moving obstacles whose motion is
not known a priori.

• It is applicable to both rigid and articulated
robots of arbitrarily high degrees of freedom, as
well as multiple collaborative agents.

• It allows specification of various types of
geometric constraints.

• It runs in real time for modestly complex
environments.

Hence, it is bad to use a solution strategy that
seeks a single answer; rather, it prefers a technique
that produces many solutions that reflect the range
of possible outcomes. While for feature animation a
user is expected to choose the one animation they
prefer, other applications benefit directly from
multiple solutions:
• Computer simulator designers can use different

animations each time a simulation is on stage,
making it less predictable and potentially more
entertaining.

• Training environments can present trainees with
multiple physically consistent scenarios that
reflect the physics and variety of the real world.

The author generates multiple animations that
satisfy constraints by applying an original algorithm
to trial from a randomized model. The algorithm
needs the model of the environment, including the
sources of uncertainty and the simulator that will
generate an animation in the virtual environment.

The algorithm described in this paper generates
an arbitrarily sequence of animations in which
“good” animations are expected to appear.

Generating motions for real or virtual agents,
which are coupled to a goal or task, is usually a
complicated task. A wide variety of approaches and
methodologies have been proposed to attempt the
problem [5]. In most cases, these solutions can be
viewed as "search" algorithms, where one tray to find
a way to the goal through some space representative
for the problem. Each search space is tailored to the
problem itself, which allows for an extremely wide
variety of extensions, applications, and even
interpretations of the basic motion planning problem
[6]. The solution is to utilize the simulation to relax
the requirement of precise control of many degrees
of freedom, and instead allow the agents or their
parts to move toward the goal through the use of
artificial forces acting on the agents.

Control, when needed, is gained through
integration of these forces with simplified paths
through the search domain [7]. One can shows that

an animation framework can overcome many of the
limitations of prior approaches and show how it can
be used in a variety of application including hyper-
redundant robots [8]. For example, consider a team
of robotic arms on a manufacturing assembly line
whose task is to simultaneously assembly an
automobile.

Each arm would need several joints in order to
effectively articulate itself to be able to cover any
part of the vehicle. The individual arms must move
themselves to precise locations along the
automobile's body while also avoiding collisions
with other arms, the car and other parts of the
assembly line.

However, in many cases where the goal is only
to have a mass that moves around, motion planning
and simulation algorithms could be used to
determine this locomotion and to provide goals for
each agent. They share a set of rules govern their
motion.

Equations for robot dynamics, can model the
agent's physical properties, how it interacts with its
neighbours, and in which direction it should
proceed next. Furthermore, if the vehicle or its parts
are moving along the assembly belt, then, their end-
effectors must accurately move with the item in a
prescribed manner. To automate this process,
algorithms must be able to quickly determine the
sequence, or collectively a path, of joint angles that
each arm must follow to both reach the piece.
Finally, it needs a motion controller to execute that
sequences.

4. Application to prototyping

Below the author discuss a few issues
pertaining to the implementation of the simulation-
related algorithms available in commercial software
packages.

The algorithm was implemented with DELPHI
object-oriented programming language. The author
used in-house library ANIMATION-VIEW for
collision detection by generating of the distance
fields for surface repulsion constraints.

Platform’ toolbox offers the Delphi functions
for the implementation of the virtual system
prototypes. For discrete set {tk} of instants, Delphi
system generates an images sequence of the virtual
robot system.
The author has tested the proposed motion planning
system for a robotic assembly line. An animation
generated from this type of scenario is shown in
Figure 1.

RECENT, Vol. 13, no. 3(36), November, 2012

282

Figure 1. Car manufacturing plant - robotic assembly line

With respect to dynamic obstacles, fast moving

obstacles may still collide with a robot since the
robots may not always have enough time to react. A
velocity-bias also helps with this situation, by
essentially projecting the moving obstacle forward
in time to a position which a robot can reason about.
This situation can also usually be overcome by
placing velocity-limits on the obstacles or otherwise
correcting the local avoidance parameters.

Regarding parameters, many of the simulation
components require correction of parameters to
have a realistic and stable simulation. Some
algorithms exist which can auto-time some of these
parameters, but to the best of our knowledge no
approach does this well in a generic manner.

5. Conclusions

The author has reformulated the motion
planning problem into a virtual simulation problem,
where constraints on the robot’s motion guide it
from its starting configuration to its target, on the
virtual scene. Virtual reality developers can
populate their environments with many agents each
of which have their own goal, task, or behaviours.

The avoidance of collision, the following of
estimated paths, and many other possible
relationships between the cooperative robots and
objects on the scene, are feasible in the virtual
environment. An animator could solve this task by
carefully moving each agent through the scene.

An algorithm can precisely control all aspects
of the situation, or it can employ a predetermined
set of laws or rules which influence the motion and
behaviour. It is known that there are a wide variety
of technical challenges at both ends of this

spectrum, resulting in consideration attention from
the related research communities. With precise
control, it has been shown that the time required
finding a solution grows intractably as the
complexity of the planning problem, the underlying
robot, or the scene increases.

The models proposed by author arise naturally
in the virtual environment and provide a means of
verifying the plausibility of the motion in the real
environment. With further work it should be
possible to experimentally obtain more accurate
robot dynamically models who require finding good
animation.

References
1. Yamane, K., Nakamura, Y. (2003) Natural motion animation

through constraining and de-constraining at will. Journal
IEEE Transactions on Visualization and Computer
Graphics, DOI: 10.1109/TVCG.2003.1207443, vol. 9, no.
3, p. 352-360

2. Weinstein, R., Teran, J., Fedkiw, R. (2005) Dynamic
simulation of articulated rigid bodies with contact and
collision. Journal IEEE Transactions on Visualization and
Computer Graphics, ISSN: 1077-2626, vol. 12, no. 3, p.
365-374

3. Barzel, R., et al. (1996) Plausible motion simulation for
computer graphics animation. Proceedings of the Euro-
graphics Workshop on Computer Animation and Simulation,
Springer-Verlag, ISBN: 3-211-82885-0, New York, December
1996, p. 183-197

4. Venture, G., Ripert, P.J., Khalil, W., Gautier, M., Bodson, P.:
Modeling and identification of passenger car dynamics using
robotics formalism. Journal IEEE Trans. on Intelligent
Transportation Systems, DOI: 10.1109/TITS. 2006.880620,
vol. 7, no. 3, p. 349-359

5. Moll, M., Kavraki, L.: Path planning for variable resolution
minimal energy curves of constant length. Proceedings of
International Conference on Robotics and Automation, DOI:
10.1109/ROBOT.2005.1570428, vol. 7, p. 2130-2135

6. Rodrigues, L., How, J. (2003) Observer-based control of
piecewise-affine systems. International Journal of Control,
DOI: 10.1080/0020717031000091432, vol. 76, no. 5, p. 459-
477

7. Laumond, J.P. (1998) Robot Motion Planning and Control.
Springer, ISBN 3-540-76219-1

8. LaValle, S.M. (2006) Planning Algorithms. Available for
downloading at http://planning.cs.uiuc.edu/, Published by
Cambridge University Press

Received in November 2012

