STATEFUL KNOWLEDGE SESSION IMPLEMENTATION
WITH RETE ALGORITHM

Daniedla GOTSEVA

Technical University of Sofia, Bulgaria

Abstract. This paper discusses some concepts related toetee ARgorithm, which consist of two parts: compiat
and runtime execution. After a brief explanationRate Algorithm and its combination with the latesthnology the
stateful knowledge session is discussed and thes gnoduct is presented.

Keywords: Rete algorithm, artificial intelligence

1. Introduction into Rete algorithm ObjectTypeNode and have all 1-input and 2-input
The Rete algorithm was invented by Dr. nodes descended from it. This way, if an applicatio
Charles Forgy in 1978-79 [1, 2, 6]. It can be broke asserts a new Account, it won't propagate to the
into 2 parts: rule compilation and runtime nodes for the Order object. In Drools when an
execution. object is asserted it retrieves a list of valid
The compilation algorithm describes how the ObjectTypesNodes via a lookup in a HashMap from
Rules in the Production Memory are processed tdhe object's Class; if this list doesn't existciarss all
generate an efficient discrimination network. Thethe ObjectTypeNodes finding valid matches which
nodes at the top of the network would have manyt caches in the list. This enables Drools to match
matches, and as we go down the network, ther@gainst any Class type that matches with an instanc
would be fewer matches. At the very bottom of theof check.
network are the terminal nodes. In Dr. Forgy's 1982
paper, he described four basic nodes: root, 1-jnput ReteNode

2-input and terminal (Figure 1). .

. ObjectTypeMode . Rerlarhcacdir P,
Cheese Person

¥ K
AlphaMode .
O LeftinputAdapteriode | Y

|I." \ Mothoda !
) |II . .
O —— i 5 Figure 2. ObjectTypeNodes

TerminalMode Drools extend Rete by optimizing the
propagation from ObjectTypeNode to AlphaNode
using hashing. Each time an AlphaNode (Figure 3)

The root node is where all objects enter thelS added to an ObjectTypeNode it adds the literal

network. From there, it immediately goes to theV@lue as a key to the HashMap with the AlphaNode

ObjectTypeNode (Figure 2). The purpose of the®S the value. When a new instance enters the

ObjectTypeNode is to make sure the engine doesn¢PiectTypeNode, rather than propagating to each
do more work than it needs to. For example, say wé'PhaNode, it can instead retrieve the correct
have two objects: Account and Order. If the rule”lPhaNode from the HashMap, thereby avoiding
engine tried to evaluate every single node againdfnnecessary literal checks.

every object, it would waste a lot of cycles. To !N this paper the combination between Rete
make things efficient, the engine should only passAlgorlthm and the latest technologles_ is described,
the object to the nodes that match the object type2nd how all fuss together to provide the DSS
The easiest way to do this is to create ar(D€CISION Support System).

160

Figure 1. Rete Nodes

RECENT, Vol. 14, no. 3(39), November, 2013

Cheese pub|iC class Room {

. private String name
Il getter and setter methods here
}

. name == “cheddar" public class Sprinkler {
private Room room;

privateboolean on;

: Il getter and setter methods here
strength == “strong" }

Figure 3. Alpha Nodes . .
public class Fire {
private Room room;

2. Knowledge sessions Il getter and setter methods here

2.1. Stateless knowledge session }
Stateless session, not utilising inference, forms
the simplest use case. A stateless session can| be public class Alarm {

called like a function passing it some data and the }
receiving some results back-fg. Some common Listing 1. Java Classes for Fire Alarm Example
use cases for stateless sessions are, but naditoit
- Validation Let's introduce the concepts of inserting and
- Calculation matching against data. This example assumed that
- Routing and Filtering only a single instance of each object type was ever
An explanation on how to use Statelessinserted and thus only used literal constraints.
Knowledge Session can be found in [7]. However, a house has many rooms, so rules must
express relationships between objects, such as a
2.2. Stateful knowledge session sprinkler being in a certain room. This is bestelon

Stateful Sessions [1] are longer lived and allowby using a binding variable as a constraint in a
iterative changes over time. Some common us@attern. This “join" process results in what idezhl
cases for Stateful Sessions are, but not limited to cross products, which are covered in the next@ecti

- Monitoring When a fire occurs, an instance of the Fire class

- Stock market monitoring and analysis for is created, for that room, and inserted into the
semi-automatic buying. session. The rule uses a binding on the room é&ld

- Diagnostics the Fire object to constrain matching to the speink

- Fault finding, medical diagnostics for that room, which is currently off. When thideru

- Logistics fires and the consequence is executed the sprinkler

- Parcel tracking and delivery provisioning is turned on (Listing 2).

- Compliance

- Validation of legality for market trades. rule "When there is a fire turn on the sprinkler"

In contrast to a Stateless Session, the dispose() Wwhen
method must be called afterwards to ensure there Fire($room: room)
are no memory leaks, as the Knowledge Base $sprinkler : Sprinkler(room == $room, on =
contains references to Stateful Knowledge Sessign@se)
when they are created. StatefulKnowledgeSession then ,

: modify($sprinkler) { setOn(true) };
e_llso supports the BatC_hExeCUtor mterface, System.out.printin("Turn on the sprinkler for rogm
likeStatelessKnowledgeSession, the only difference .. groom.getName()):
being that the FireAllRules command is not end
automatically called at the end for a Stateful Listing 2. Rule for Fire Alarm Example
Session.

The monitoring use case with an example for whereas the Stateless Session uses standard
raising a fire alarm is illustrated. Using just fou Java syntax to modify a field [7], in the aboveerul
classes, we can represent rooms in a house, eachtft modify statement, which acts as a sort of "with
which has one sprinkler. If a fire starts in a room statement is used. It may contain a series of comma
this can be represented that with a single Fireseparated Java expressions, i.e., calls to seifers
instance (Listing 1). the object selected by the modify statement's obntr

161

RECENT, Vol. 14, no. 3(39), November, 2013

expression. This modifies the data, and makes t
engine aware of those changes so it can reason g@
them once more. This process is called infereng
and it's essential for the working of a Statefy
Session. Stateless Sessions typically do not U
inference, so the engine does not need to be aw
of changes to data. Inference can also be turrfed
explicitly by using the sequential mode.

So far we have rules that tell us when matching

data exists, but what about when it does exist?

he rule "Cancel the alarm when all the fires have gone
ver when

e, hotFire()

$alarm : Alarm()

se then

retract($alarm);

System.out.printin("Cancel the alarm™);
end

are
of

Listing 5. Rule for cancel alarm

Finally there is a general health status message

How do determine that a fire has been extinguishedhat is printed when the application first stantsl a

i.e., that there isn't a Fire object anymore

?after the alarm is removed and all sprinklers have

Previously the constraints have been sentenceseen turned off (Listing 6).

according to Propositional Logic, where the engine

is constraining against individual instances. 4
pattern under the keyword not matches whe
something does not exist. The rule given in Listin
3 turns the sprinkler off as soon as the fire iat th
room has disappeared.

rule "When the fire is gone turn off the sprinkler"
when
$room : Room()
$sprinkler : Sprinkler(room == $room, on =
true)
not Fire(room == $room)
then
modify($sprinkler) { setOn(false) };
System.out.printin("Turn off the sprinkler for nmo
" + $room.getName());
end

Listing 3. Rule for turning off the sprinkler

While there is one sprinkler per room, there i
just a single alarm for the building. An Alarm otije
is created when a fire occurs, but only one Alasm

needed for the entire building, no matter how many

fires occur. Previously not was introduced to matg
the absence of a fact; now it is used its compléme
exists which matches for one or more instances
some category (Listing 4).

rule "Raise the alarm when we have one or mo
fires"

when

exists Fire()

then

insert(new Alarm());

System.out.printin("Raise the alarm");

end

Listing 4. Rule for raising alarm for >= 1 fires

\ rule "Status output when things are ok"
n when
g not Alarm()
not Sprinkler(on == true)
then
System.out.printin("Everything is ok");
end

Listing 6. Rule for status oputput

The above rules should be placed in a single
DRL file and saved to some directory on the
classpath and using the file name fireAlarm.drl, as
in the Stateless Session example. Then it is Imgjldi
a Knowledge Base, as before, just using the new
name fireAlarm.drl. The difference is that this éim
we create a Stateful Session from the Knowledge
Base, whereas before we created a Stateless Session
(Listing 7).

S KnowledgeBuilder kbuilder = KnowledgeBuilderF,
ctory.newKnowledgeBuilder();
kbuilder.add(ResourceFactory.newClassPathResour
ce("fireAlarm.drl", getClass()),
ResourceType.DRL);
h if (kbuilder.hasErrors()) {

D

nf) System.err.printin(kbuilder.getErrors().to8g()
ol;

}

kbase.addKnowledgePackages(kbuilder.getKnowle
cdgePackages());

StatefulkKnowledgeSession ksession = kbase.newSta
tefulkKnowledgeSession();

Listing 7. fireAlarm file

With the session created it is now possible to
iteratively work with it over time. Four Room objec
are created and inserted, as well as one Sprinkler
object for each room. At this point the engine has
done all of its matching, but no rules have fired. y

Likewise, when there are no fires we want tocglling ksession.fireAllRules() allows the matched

remove the alarm, so the not keyword can be us
again (Listing 5).

efliles to fire, but without a fire that will justgutuce
the health message (Listing 8).

16

2

RECENT, Vol. 14, no. 3(39), November, 2013

String[] names = new String[]{"kitchen", "bedroon
", "office", "livingroom"};
Map<String,Room> name2room = new HashMap<
String,Room>();
for(String name: names){
Room room = new Room(name);
name2room.put(name, room);
ksession.insert(room);
Sprinkler sprinkler = new Sprinkler(room);
ksession.insert(sprinkler);

}

ksession.fireAllRules();
> Everything is ok

Listing 8. Main program

- One call results in a single execution.

- Rules execute by matching against any data
as long it is inserted into the engine.

- Rules can never be called directly.

- Specific instances cannot be passed to a rule.

- Depending on the matches, a rule may fire
once or several times, or not at all.

ksession.retract(kitchenFireHandle);
ksession.retract(officeFireHandle);

ksession.fireAllRules();

> Cancel the alarm

> Turn off the sprinkler for room office
> Turn off the sprinkler for room kitchen
> Everything is ok

Then it is created two fires and insert them; th

time a reference is kept for the returned FactHandl

0

Listing 10. System Testing

A Fact Handle is an internal engine reference ¢o t
inserted instance and allows instances to |
retracted or modified at a later point in time. WVit
the fires now in the engine, once fireAllRules() i

N public void helloWorld(Person person) {
D€ if (person.getName().equals("Chuck")) {
System.out.printin("Hello Chuck");

U7

called, the alarm is raised and the respecti

e 1}

sprinklers are turned on (Listing 9).

Listing 11. Method sample

Fire kitchenFire = new Fire(name2room.get("kitch
en"));

Fire officeFire = new Fire(name2room.get("office"
));

rule "Hello World"

when

Person(name == "Chuck")

then

System.out.printin("Hello Chuck");

FactHandle kitchenFireHandle = ksession.insert(|Ki

it end

chenFire);
FactHandle officeFireHandle = ksession.insert(coffi
eFire);

ksession.fireAllRules();

> Raise the alarm

> Turn on the sprinkler for room kitchen
> Turn on the sprinkler for room office

Listing 9. FactHandle engine

Listing 12. Rule sample

3. Cross products

Earlier the term “cross product” was
mentioned, which is the result of a join. Imagioe f
a moment that the data from the fire alarm example
were used in combination with the following rule
where there are no field constraints (Listing 13).

After a while the fires will be put out and the
Fire instances are retracted. This results in tf
sprinklers being turned off, the alarm being
cancelled, and eventually the health message
printed again. The testing of the system is preskent
in Listing 10.

rule
when
e $room : Room()
) $sprinkler : Sprinkler()
IS then

System.out.printin("room:" + $room.getName()
+" sprinkler:" +
$sprinkler.getRoom().getName());

2.3. Methods versus Rules end
People often confuse methods (Listing 11) and Listing 13. Cross product
rules (Listing 12), and new rule users regular ask,
"How do | call a rule?" After the last section the In SQL terms this would be like doirsglect *

answer to that is obvious, but let's summarize thédrom Room, Sprinkler and every row in the Room

differences nonetheless.
- Methods are called directly.
- Specific instances are passed.

table would be joined with every row in the
Sprinkler table resulting in the output shown in
Listing 14.

163

RECENT, Vol. 14, no. 3(39), November, 2013

room:officesprinkler:office
room:officesprinkler:kitchen
room:officesprinkler:livingroom
room:officesprinkler:bedroom
room:kitchensprinkler:office
room:kitchensprinkler:kitchen
room:kitchensprinkler:livingroom
room:kitchensprinkler:bedroom
room:livingroomsprinkler:office
room:livingroomsprinkler:kitchen
room:livingroomsprinkler:livingroom

room:livingroomsprinkler:bedroom 1

room:bedroomsprinkler:office
room:bedroomsprinkler:kitchen
room:bedroomsprinkler:livingroom
room:bedroomsprinkler:bedroom

Listing 14. Output from cross product 3.

These cross products can obviously becomé-

huge, and they may very well contain spurious data.

The size of cross products is often the source of

performance problems for new rule authors. From

this it can be seen that it's always desirable t®.

constrain the cross products, which is done wiéh th

variable constraint (Listing 15). 7

rule
when

$room : Room()

$sprinkler : Sprinkler(room == $room)
then
System.out.printin("room:" + $room.getName() +
" sprinkler:" + $sprinkler.getRoom().getName());
end

Listing 15. Variable constraint

room:officesprinkler:office
room:kitchensprinkler:kitchen
room:livingroomsprinkler:livingroom
room:bedroomsprinkler:bedroom

Listing 16. Correct cross product

This results in just four rows of data, with the
correct Sprinkler for each Room. In SQL (actually
HQL) the corresponding query would Iselect *
from Room, Sprinkler where Room
Sprinkler.room, which is shown in Listing 16.

2.

4. Conclusion

In the following paper the Rete Algorithm is

described and the latest technologies that can be
combined with it. All specific codding patterns are
shown here to express the way in which Rete can be
realized. It's a good idea to create a template for
statefull knowledge session, which allows iterative
changes at long period of time in the future.

References

Selvamony, R. (2010ntroduction to the Rete algorithm.
SAP Community Network. Available at: www.sdn.sapéo
irj/'scn/go/portal/prtroot/docs/library/uuid/10de&%itbef-2d 10-
0e89-a7447f95bc0e?overridelayout=true&498688654@8239
*** Rete Algorithm. Available at: http://en.wikipedia.org/
wiki/Rete_algorithm

Winston, P.H. (1992Artificial Intelligence. Third Edition,
Pearson Education, ISBN-13: 978-0201533774
Patterson, D.W. (1990htroduction to Artificial Intelligence
and Expert Systems. Prentice Hall India, ISBN: 978-81-
203-0777-3

Russel, St., Norvig, P. (2004tificial Intelligence- A Modern
Approach. 3rd Edition, Prentice Hall, ISBN 978-0136042594
Madden, N. (2003pptimizing Rete for Low-Memory, Multi-
Agent Systems. Available at: http:/citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.98.6328&rep=repl&typmf=p

. Dimakopoulos, |. (2013)mplementing Rete Algorithm with

Sateless Knowledge Session. Proceedings of International
Conference on Challenges in Higher Education and
Research in the #1Century, Sozopol, Bulgaria

Received in August 2013

164

