
160

STATEFUL KNOWLEDGE SESSION IMPLEMENTATION

WITH RETE ALGORITHM

Daniela GOTSEVA
Technical University of Sofia, Bulgaria

Abstract. This paper discusses some concepts related to the Rete Algorithm, which consist of two parts: compilation
and runtime execution. After a brief explanation of Rete Algorithm and its combination with the latest technology the
stateful knowledge session is discussed and the cross product is presented.

Keywords: Rete algorithm, artificial intelligence

1. Introduction into Rete algorithm

The Rete algorithm was invented by Dr.
Charles Forgy in 1978-79 [1, 2, 6]. It can be broken
into 2 parts: rule compilation and runtime
execution.

The compilation algorithm describes how the
Rules in the Production Memory are processed to
generate an efficient discrimination network. The
nodes at the top of the network would have many
matches, and as we go down the network, there
would be fewer matches. At the very bottom of the
network are the terminal nodes. In Dr. Forgy's 1982
paper, he described four basic nodes: root, 1-input,
2-input and terminal (Figure 1).

Figure 1. Rete Nodes

The root node is where all objects enter the

network. From there, it immediately goes to the
ObjectTypeNode (Figure 2). The purpose of the
ObjectTypeNode is to make sure the engine doesn't
do more work than it needs to. For example, say we
have two objects: Account and Order. If the rule
engine tried to evaluate every single node against
every object, it would waste a lot of cycles. To
make things efficient, the engine should only pass
the object to the nodes that match the object type.
The easiest way to do this is to create an

ObjectTypeNode and have all 1-input and 2-input
nodes descended from it. This way, if an application
asserts a new Account, it won't propagate to the
nodes for the Order object. In Drools when an
object is asserted it retrieves a list of valid
ObjectTypesNodes via a lookup in a HashMap from
the object's Class; if this list doesn't exist it scans all
the ObjectTypeNodes finding valid matches which
it caches in the list. This enables Drools to match
against any Class type that matches with an instance
of check.

Figure 2. ObjectTypeNodes

Drools extend Rete by optimizing the

propagation from ObjectTypeNode to AlphaNode
using hashing. Each time an AlphaNode (Figure 3)
is added to an ObjectTypeNode it adds the literal
value as a key to the HashMap with the AlphaNode
as the value. When a new instance enters the
ObjectTypeNode, rather than propagating to each
AlphaNode, it can instead retrieve the correct
AlphaNode from the HashMap, thereby avoiding
unnecessary literal checks.

In this paper the combination between Rete
Algorithm and the latest technologies is described,
and how all fuss together to provide the DSS
(Decision Support System).

RECENT, Vol. 14, no. 3(39), November, 2013

161

Figure 3. Alpha Nodes

2. Knowledge sessions
2.1. Stateless knowledge session

Stateless session, not utilising inference, forms
the simplest use case. A stateless session can be
called like a function passing it some data and then
receiving some results back [3÷5]. Some common
use cases for stateless sessions are, but not limited to:

- Validation
- Calculation
- Routing and Filtering

An explanation on how to use Stateless
Knowledge Session can be found in [7].

2.2. Stateful knowledge session

Stateful Sessions [1] are longer lived and allow
iterative changes over time. Some common use
cases for Stateful Sessions are, but not limited to:

- Monitoring
- Stock market monitoring and analysis for

semi-automatic buying.
- Diagnostics
- Fault finding, medical diagnostics
- Logistics
- Parcel tracking and delivery provisioning
- Compliance
- Validation of legality for market trades.

In contrast to a Stateless Session, the dispose()
method must be called afterwards to ensure there
are no memory leaks, as the Knowledge Base
contains references to Stateful Knowledge Sessions
when they are created. StatefulKnowledgeSession
also supports the BatchExecutor interface,
likeStatelessKnowledgeSession, the only difference
being that the FireAllRules command is not
automatically called at the end for a Stateful
Session.

The monitoring use case with an example for
raising a fire alarm is illustrated. Using just four
classes, we can represent rooms in a house, each of
which has one sprinkler. If a fire starts in a room,
this can be represented that with a single Fire
instance (Listing 1).

public class Room {
private String name
 // getter and setter methods here
}

public class Sprinkler {
private Room room;
privateboolean on;
 // getter and setter methods here
}

public class Fire {
private Room room;
 // getter and setter methods here
}

public class Alarm {
}
Listing 1. Java Classes for Fire Alarm Example

Let’s introduce the concepts of inserting and

matching against data. This example assumed that
only a single instance of each object type was ever
inserted and thus only used literal constraints.
However, a house has many rooms, so rules must
express relationships between objects, such as a
sprinkler being in a certain room. This is best done
by using a binding variable as a constraint in a
pattern. This "join" process results in what is called
cross products, which are covered in the next section.

When a fire occurs, an instance of the Fire class
is created, for that room, and inserted into the
session. The rule uses a binding on the room field of
the Fire object to constrain matching to the sprinkler
for that room, which is currently off. When this rule
fires and the consequence is executed the sprinkler
is turned on (Listing 2).

rule "When there is a fire turn on the sprinkler"
when
Fire($room : room)
 $sprinkler : Sprinkler(room == $room, on ==

false)
then
 modify($sprinkler) { setOn(true) };
System.out.println("Turn on the sprinkler for room

" + $room.getName());
end

Listing 2. Rule for Fire Alarm Example

Whereas the Stateless Session uses standard

Java syntax to modify a field [7], in the above rule
the modify statement, which acts as a sort of "with"
statement is used. It may contain a series of comma
separated Java expressions, i.e., calls to setters of
the object selected by the modify statement's control

RECENT, Vol. 14, no. 3(39), November, 2013

162

expression. This modifies the data, and makes the
engine aware of those changes so it can reason over
them once more. This process is called inference,
and it's essential for the working of a Stateful
Session. Stateless Sessions typically do not use
inference, so the engine does not need to be aware
of changes to data. Inference can also be turned off
explicitly by using the sequential mode.

So far we have rules that tell us when matching
data exists, but what about when it does not exist?
How do determine that a fire has been extinguished,
i.e., that there isn't a Fire object anymore?
Previously the constraints have been sentences
according to Propositional Logic, where the engine
is constraining against individual instances. A
pattern under the keyword not matches when
something does not exist. The rule given in Listing
3 turns the sprinkler off as soon as the fire in that
room has disappeared.

rule "When the fire is gone turn off the sprinkler"
when
 $room : Room()
 $sprinkler : Sprinkler(room == $room, on ==

true)
not Fire(room == $room)
then
 modify($sprinkler) { setOn(false) };
System.out.println("Turn off the sprinkler for room

" + $room.getName());
end

Listing 3. Rule for turning off the sprinkler

While there is one sprinkler per room, there is
just a single alarm for the building. An Alarm object
is created when a fire occurs, but only one Alarm is
needed for the entire building, no matter how many
fires occur. Previously not was introduced to match
the absence of a fact; now it is used its complement
exists which matches for one or more instances of
some category (Listing 4).

rule "Raise the alarm when we have one or more

fires"
when
exists Fire()
then
insert(new Alarm());
System.out.println("Raise the alarm");
end
Listing 4. Rule for raising alarm for >= 1 fires

Likewise, when there are no fires we want to

remove the alarm, so the not keyword can be used
again (Listing 5).

rule "Cancel the alarm when all the fires have gone"
when
not Fire()
 $alarm : Alarm()
then
retract($alarm);
System.out.println("Cancel the alarm");
end

Listing 5. Rule for cancel alarm

Finally there is a general health status message
that is printed when the application first starts and
after the alarm is removed and all sprinklers have
been turned off (Listing 6).

rule "Status output when things are ok"
when
not Alarm()
not Sprinkler(on == true)
then
System.out.println("Everything is ok");
end

Listing 6. Rule for status oputput

The above rules should be placed in a single
DRL file and saved to some directory on the
classpath and using the file name fireAlarm.drl, as
in the Stateless Session example. Then it is building
a Knowledge Base, as before, just using the new
name fireAlarm.drl. The difference is that this time
we create a Stateful Session from the Knowledge
Base, whereas before we created a Stateless Session
(Listing 7).

KnowledgeBuilder kbuilder = KnowledgeBuilderFa
ctory.newKnowledgeBuilder();

kbuilder.add(ResourceFactory.newClassPathResour
ce("fireAlarm.drl", getClass()),

 ResourceType.DRL);
if (kbuilder.hasErrors()) {
 System.err.println(kbuilder.getErrors().toString()

);
}
kbase.addKnowledgePackages(kbuilder.getKnowle

dgePackages());
StatefulKnowledgeSession ksession = kbase.newSta

tefulKnowledgeSession();
Listing 7. fireAlarm file

With the session created it is now possible to

iteratively work with it over time. Four Room objects
are created and inserted, as well as one Sprinkler
object for each room. At this point the engine has
done all of its matching, but no rules have fired yet.
Calling ksession.fireAllRules() allows the matched
rules to fire, but without a fire that will just produce
the health message (Listing 8).

RECENT, Vol. 14, no. 3(39), November, 2013

163

String[] names = new String[]{"kitchen", "bedroom
", "office", "livingroom"};

Map<String,Room> name2room = new HashMap<
String,Room>();

for(String name: names){
 Room room = new Room(name);
 name2room.put(name, room);
 ksession.insert(room);
 Sprinkler sprinkler = new Sprinkler(room);
 ksession.insert(sprinkler);
}

ksession.fireAllRules();
> Everything is ok

Listing 8. Main program

Then it is created two fires and insert them; this

time a reference is kept for the returned FactHandle.
A Fact Handle is an internal engine reference to the
inserted instance and allows instances to be
retracted or modified at a later point in time. With
the fires now in the engine, once fireAllRules() is
called, the alarm is raised and the respective
sprinklers are turned on (Listing 9).

Fire kitchenFire = new Fire(name2room.get("kitch

en"));
Fire officeFire = new Fire(name2room.get("office"

));

FactHandle kitchenFireHandle = ksession.insert(kit

chenFire);
FactHandle officeFireHandle = ksession.insert(offic

eFire);

ksession.fireAllRules();
> Raise the alarm
> Turn on the sprinkler for room kitchen
> Turn on the sprinkler for room office

Listing 9. FactHandle engine

After a while the fires will be put out and the
Fire instances are retracted. This results in the
sprinklers being turned off, the alarm being
cancelled, and eventually the health message is
printed again. The testing of the system is presented
in Listing 10.

2.3. Methods versus Rules

People often confuse methods (Listing 11) and
rules (Listing 12), and new rule users regular ask,
"How do I call a rule?" After the last section the
answer to that is obvious, but let's summarize the
differences nonetheless.

- Methods are called directly.
- Specific instances are passed.

- One call results in a single execution.
- Rules execute by matching against any data

as long it is inserted into the engine.
- Rules can never be called directly.
- Specific instances cannot be passed to a rule.
- Depending on the matches, a rule may fire

once or several times, or not at all.

ksession.retract(kitchenFireHandle);
ksession.retract(officeFireHandle);

ksession.fireAllRules();
> Cancel the alarm
> Turn off the sprinkler for room office
> Turn off the sprinkler for room kitchen
> Everything is ok

Listing 10. System Testing

public void helloWorld(Person person) {
if (person.getName().equals("Chuck")) {
System.out.println("Hello Chuck");
 }
}

Listing 11. Method sample

rule "Hello World"
when
Person(name == "Chuck")
then
System.out.println("Hello Chuck");
end

Listing 12. Rule sample

3. Cross products
Earlier the term "cross product" was

mentioned, which is the result of a join. Imagine for
a moment that the data from the fire alarm example
were used in combination with the following rule
where there are no field constraints (Listing 13).

rule
when
 $room : Room()
 $sprinkler : Sprinkler()
then
System.out.println("room:" + $room.getName()
 +" sprinkler:" +
 $sprinkler.getRoom().getName());
end

Listing 13. Cross product

In SQL terms this would be like doing select *
from Room, Sprinkler and every row in the Room
table would be joined with every row in the
Sprinkler table resulting in the output shown in
Listing 14.

RECENT, Vol. 14, no. 3(39), November, 2013

164

room:officesprinkler:office
room:officesprinkler:kitchen
room:officesprinkler:livingroom
room:officesprinkler:bedroom
room:kitchensprinkler:office
room:kitchensprinkler:kitchen
room:kitchensprinkler:livingroom
room:kitchensprinkler:bedroom
room:livingroomsprinkler:office
room:livingroomsprinkler:kitchen
room:livingroomsprinkler:livingroom
room:livingroomsprinkler:bedroom
room:bedroomsprinkler:office
room:bedroomsprinkler:kitchen
room:bedroomsprinkler:livingroom
room:bedroomsprinkler:bedroom

Listing 14. Output from cross product

These cross products can obviously become

huge, and they may very well contain spurious data.
The size of cross products is often the source of
performance problems for new rule authors. From
this it can be seen that it's always desirable to
constrain the cross products, which is done with the
variable constraint (Listing 15).

rule
when
 $room : Room()
 $sprinkler : Sprinkler(room == $room)
then
System.out.println("room:" + $room.getName() +
" sprinkler:" + $sprinkler.getRoom().getName());
end

Listing 15. Variable constraint

room:officesprinkler:office
room:kitchensprinkler:kitchen
room:livingroomsprinkler:livingroom
room:bedroomsprinkler:bedroom

Listing 16. Correct cross product

This results in just four rows of data, with the

correct Sprinkler for each Room. In SQL (actually
HQL) the corresponding query would be select *
from Room, Sprinkler where Room ==
Sprinkler.room, which is shown in Listing 16.

4. Conclusion
In the following paper the Rete Algorithm is

described and the latest technologies that can be
combined with it. All specific codding patterns are
shown here to express the way in which Rete can be
realized. It’s a good idea to create a template for
statefull knowledge session, which allows iterative
changes at long period of time in the future.

References
1. Selvamony, R. (2010) Introduction to the Rete algorithm.

SAP Community Network. Available at: www.sdn.sap.com/
irj/scn/go/portal/prtroot/docs/library/uuid/10dea1d3-fbef-2d10-
0e89-a7447f95bc0e?overridelayout=true&49868865442396

2. *** Rete Algorithm. Available at: http://en.wikipedia.org/
wiki/Rete_algorithm

3. Winston, P.H. (1992) Artificial Intelligence. Third Edition,
Pearson Education, ISBN-13: 978-0201533774

4. Patterson, D.W. (1990) Introduction to Artificial Intelligence
and Expert Systems. Prentice Hall India, ISBN: 978-81-
203-0777-3

5. Russel, St., Norvig, P. (2009) Artificial Intelligence- A Modern
Approach. 3rd Edition, Prentice Hall, ISBN 978-0136042594

6. Madden, N. (2003) Optimizing Rete for Low-Memory, Multi-
Agent Systems. Available at: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.98.6328&rep=rep1&type=pdf

7. Dimakopoulos, I. (2013) Implementing Rete Algorithm with
Stateless Knowledge Session. Proceedings of International
Conference on Challenges in Higher Education and
Research in the 21st Century, Sozopol, Bulgaria

Received in August 2013

