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Abstract 
The data presented in this paper is part of a comprehensive study on mathematical modelling by active 
experiment, using first-order designs in order to optimize linear mathematical models. In this respect, a 2k full 
factorial design was used. In the research, the experimentation plan was established to enable a higher number 
of experiments than the number of coefficients to be determined. There was established the matrix of the 
designed experiment and the calculation was performed according to the methodology specific to the 23 full 
factorial experiments. The results obtained by experimental design were employed in the study, using a special 
Mo-Ni alloyed cast iron, heat treated, whose elongation values were determined. Finally, a small number of 
determinations were used to determine the specific technological parameters and the maximum hardness of the 
analysed material. 
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1. Introduction 

Where, as part of the scientific research, statistical methods are employed in all stages of an 
experiment (before, during, and after the experiment), the work is carried out according to the 
following sequence: 

- determination of the number of experiments and the conditions for their conduct (prior to the 
experiment); 

- processing of the results (during the experiments); 
- determination of the conclusions on the execution of future experiments (after the experiment). 

This specific manner of conducting research is called active experiment and involves the design of 
the experiment conducted by [1-9]: 

- establishing the necessary and sufficient number of experiments and the conditions for their 
conduct; 

- determination by statistical methods of the regression equation, representing a certain degree of 
approximation, computable, the model of the process; 

- determination of the conditions for obtaining the optimal performance for the analysed process. 
The design of experiment (DOE) will be used in this paper with 2k full factorial experiments (FFE) 

to determine the direction of movement to an optimal range from a known point, calculation 
performed in the research regarding the optimization of the elongation values of a heat treated special 
cast iron. 

 
2.Research Objectives 

The main objective of this paper is to achieve mathematical modelling by active experiment, using 
23 full factorial experiments, in order to optimize the linear mathematical model, determining the 
direction of movement to an optimal domain from a known point. In this case, of interest was the 
establishment of technological parameters in order to maximize the elongation of a heat treated 
special cast iron. 
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3. Steps for Applying Mathematical Modelling by Active Experiment Using the 2k Full 
Factorial Design 
The designed experiment is solved according to the following steps [1-9]: 

(1) The number of factors (zi) taken into account is determined and the value of the factors 
expressed in natural units and coded units is correlated; 

(2) The baseline (zi0), the variation range (Δzi) and the upper (+1) and lower (–1) levels of the 
analysed factors are determined; 

(3) The form of the mathematical model used is established based on the encoded values and taking 
into account the fact that it's important in optimizing the mathematical model by the design of 
experiment method, and in this case we can only determine the direction of movement to the 
optimal range (from a known point) and, therefore, only the linear part of the mathematical model 
is studied, according to the [1, 2] expression: 
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(4 ) The matrix of the 2k full factorial experiment design is built; 
(5) The number of parallel determinations (ni) to be performed is determined; 
(6) The coefficients of the (bi) mathematical model are calculated using the expression [1, 2]: 
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where: 
xi = process factors (normalized variable); 

uy = arithmetic mean of process performance (arithmetic mean of parallel determinations); 

N = number of experimental points (number of rows in the design matrix); 

(7) The dispersion of the parallel determinations (row dispersion) at each experimental point ( 2
uS ) 

is calculated using the expression [1, 2]: 
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where: 
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yuk = state variable in parallel determinations; 
m = number of parallel determinations; 
(8) The homogeneity of the experimental dispersions is verified using the Cochran criterion [1, 2]: 
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where: 
GC = calculated value of the Cochran criterion; 

 2
maxuS  = maximum value (from the experiment design matrix) of the experimental dispersions; 

The calculated value of the Cochran criterion (GC) is compared to the critical (tabular) value of the 
Cochran criterion (GT), whose expression is: 

2;1; GGT
 (7) 

where: 
α = statistical coefficient of the confidence level used, α = 0.05; 
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ν1, ν2 = degrees of freedom; ν1 = m – 1; ν2 = N; 
N= number of experimental points (number of rows in the design matrix). 

Two situations arise in this case: 
a) GC<GT, it follows that the experimental dispersions are homogeneous; 
b) GC>GT, it follows that the experimental dispersions are not homogeneous; 

If the GC<GT rule is complied with, the calculation of the experimental error (reproducibility 

dispersion), 2
0S  is performed next according to the expression [1, 2]: 

1

1

2

2
0







m

S

S

N

u
u

 
(8) 

where: 
2
uS  = dispersion of parallel determinations at each experimental point; 

m = number of parallel determinations; 
(9) The significance of each coefficient “bi” with a confidence interval “Δbi” is verified according to 

the calculation method of the Student criterion. 
The confidence interval “Δbi” is calculated according to the expressions [1, 2]: 

ibvi Stb   0; ; (9) 
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where: 

ibS  = mean square deviation of “bi” factors; 
2

ibS  = “bi” factors dispersion. 

Two situations arise in this case as well [1-9]: 

a) if ii bb  , the “bi” coefficients are part of the relevant mathematical model; 

b) if ii bb  , the “bi” coefficients cannot be part of the relevant mathematical model. The 

calculation is stopped and the coefficient(s) that does (do) not verify the Student criterion is (are) 
removed; 

(9) The correlation between the mathematical model and the experimental data is verified using the 
Fischer criterion. The possibility of using this mathematical model for optimizing the process is 
verified on this occasion. This verification is employed to determine whether the calculated 
approximation of the linear dependence y = f(xi) is sufficiently precise in relation to the research 
accuracy. The verification is carried out using the following expressions [1-9]: 
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where: 
Fc = calculated value of the Fischer criterion; 

2
concS  = concordance dispersion (error due to the mathematical model); 
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where: 
νconc = number of degrees of freedom used to calculate 2

concS ; νconc = N – l; 

l = number of mathematical model coefficients; 
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and
2~
uiy  is determined by the expression: 

 22 ~~
uuui yyy  , (14) 

where: 

uy = arithmetic mean of process performance (arithmetic mean of parallel determinations); 

uy~ is the calculated state variable (mathematical model value) for each experimental point (for each 

row in the design matrix); 
The calculated value of the Fischer criterion (Fc) will be compared with the critical (tabular) value 

of the Fischer criterion (FT) whose expression is: 

 0;; vvFF concT  , (15) 

where: 
α = statistical coefficient of the confidence level used, α = 0.05; 
νconc; ν0 = number of degrees of freedom used to calculate the critical (tabular) value of the Fischer 

criterion (FT);νconc = N – l and ν0 = (m – 1), [1-9], 
where: 

N = number of experimental points (number of rows in the design matrix); 
l = number of coefficients in the mathematical model; l = 4 (b0, b1, b2, b3); 
ni = number of parallel determinations. 

Two situations arise in this case as well: 
a) if Fc ≤ FT, this mathematical model matches the experimental data and, therefore, it can be used 

to determine the direction of movement to an optimal range from a known point; 
b) if Fc ≥ FT, this mathematical model does not match the experimental data and, therefore, it is not 

a linear model and it cannot be used in this case as it does not meet the objective of the research. 
 

4. Experimental Procedure 
The studied material was a Cu-Ni cast iron with the following composition (% in weight): 3.63 %C; 

2.88 %Si; 0.45 %Mn; 0.012 %P; 0.006 %S; 0.050 %Mg; 0.42 %Cu and 0.40 %Ni. 
The data presented in this paper is part of a comprehensive study on heat treated SG cast iron 

hardness. For this purpose, eight specimens, Ø30×5 mm, were used. 
The parameters specific to the thermal treatment applied are as follows: 

- the austenitizing temperature, tA[C]; 
- the holding time at the austenitizing temperature, A [min]; 
- the temperature at isothermal level, tiz [C]; 
- the holding time at the isothermal level, iz [min]. 

All these experimental specimens, were performed at isothermal maintenance in salt-bath (55% 
KNO3+45% NaNO3), and the cooling after the isothermal holding was done in air. 

 
5. Solving the Designed Experiment 

The designed experiment is solved according to the steps presented above [1-9]. 
It was determined as the number of the zi= 3 factors analysed, i.e. tA; tiz; iz. Table 1 shows the factors 

analysed alongside base levels and variation ranges. 
 

Table 1. Determination of the factors analysed, of base levels and of variation ranges 
Factors z1 z2 z3 
Code x1 x2 x3 
Base level, (zi0) 865 350 30 
Variation range, (Δzi) 35 50 20 
Upper level, (+1) 900 400 50 
Lower level, (-1) 830 300 10 
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Table 2 shows the 23 full factorial experiment design matrix with the results obtained according to 
the design. 

 

Table 2. Matrix of the 23 full factorial experiment design 
No.exp. The order of the 

experiments 
xivariables Process performance, yuk 

uy  
x0 x1 x2 x3 y1 y2 y3 

1 4 +1 +1 +1 +1 337 325 331 331 
2 3 +1 -1 +1 +1 306 311 302 306.3333 
3 8 +1 +1 -1 +1 426 415 415 418.6667 
4 5 +1 -1 -1 +1 355 344 363 354 
5 7 +1 +1 +1 -1 321 331 323 325 
6 2 +1 -1 +1 -1 311 306 305 307.3333 
7 1 +1 +1 -1 -1 440 451 446 449.3333 
8 6 +1 -1 -1 -1 395 398 390 395.3333 
 
The expressions (18) present the calculation of the coefficients of the mathematical model (bi): 
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Table 3 shows the calculation of the dispersion of parallel determinations ( 2

uS ) in each 

experimental point. 
 

Table 3. Calculation of the dispersion of parallel determinations ( 2
uS ) in each experimental point 

No.exp. uy  2
1uy  2

2uy  2
3uy  ν 2

uS  

1 331 36 36 0 

3-1=2 523.333 / 2 = 264.6667 

2 306.3333 0.1111  18.7777 
3 418.6667 53.7777 21.7777 13.4444 
4 354 1 13.4444 81 
5 325 16 100 4 
6 307.3333 13.4444 36 5.4444 
7 449.3333 2.7777 1.7777 11.1111 
8 395.3333 0.1111 2.7777 28.4444 
Σ - 123.2222 243.8889 162.2222 - - 

Σ(Δ 2
uy ) - 523.3333 - - 

 

The homogeneity of the experimental dispersions is verified using the Cochran criterion, according 
to the expression (6): 

2032.0
6667.264

7777.53
CG  (16) 

The critical (tabular) value of the Cochran criterion (GT) is determined from the criterion-specific 
tables [1, 2] and the following value is obtained: GT = Gα, ν, N;GT = G0.05; 2; 8 =0.5157. 

Since GC<GT (0.2032 < 0.5157), it follows that the experimental dispersions are homogeneous and 
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the experimental error (the reproducibility dispersion), 2
0S , is calculated next according to the 

expression (8): 

0833.33
8

6667.2642
0 S  

The calculation of the dispersion in determining the coefficients of the mathematical model, 
calculated using the Student criterion, according to the expressions (9)-(11): 

1354.4
8

0833.332
biS ;  0336.21354.4 biS ;  306.28;05.0  tt N [2]; 

it follows that: Δbi = 2.306 2.0336 = 4.6895. 

As ii bb  : 360.875 ≥ 4.6895 (for b0); 20.125 ≥ 4.6895 (for b1); –43.45834.6895 (for b2);  

–8.3754.6895 (for b3); “bi” coefficients are part of the mathematical model obtained. 
The mathematical model specific to the parameters previously established and according to the 

expression (1) will take the form: ỹ = 360.875 + 20.125·x1 – 43.4583·x2 – 8.375·x3. 
The correlation between the mathematical model and the experimental data is verified using the 

Fischer criterion, according to expressions (12)  (15), as shown in Table 4. 
 
Table 4. The correlation between the mathematical model and the experimental data is verified 

according to the Fischer criterion 

No.exp. uy  uy~
 uy~  

2~
uy  

ν1 

1 331 329.1667 1.8333 3.3611 

8-4=4 

2 306.3333 288.9167 17.4167 303.3403 
3 418.6667 416.0833 2.5833 6.6736 
4 354 375.8333 -21.8333 476.6944 
5 325 345.9167 -20.9167 437.5069 
6 307.3333 305.6667 1.6667 2.7778 
7 449.3333 432.8333 16.5 272.25 
8 395.3333 392.5833 2.75 7.5625 

Σ(Δ 2~
uy ) - - - 1510.167 - 

 

5417.377
4

167.15102 concS ; 4118.11
0833.33

5417.377
cF  

The critical (tabular) value of the Fischer criterion (FT) is determined from the criterion-specific 
tables [1, 2] and the following value is obtained: FT = F(α; ν1; ν2) = F(0.05; 4; 2) = 19.25. 

As Fc ≤ FT (11.4118 ≤ 19.25), this mathematical model matches the experimental data and, 
therefore, it can be used to determine the direction of movement to an optimal range from a known 
point. 

Following the analysis of the values obtained in the case of the 23 full experiment design, presented 
in Table 4, it is noted that an optimal (maximum) value of the hardness of the analysed material 
(432.8333 HB) was obtained in the case of the designed experiment no.7, which had the following 
factors of the analysed process: 

x1 = at the upper level (+1) = 900 C, corresponding to the austenitizing holding temperature; 
x2 = at the lower level (-1) = 300 C, corresponding to the isothermal stage holding temperature; 
x3 = at the lower level (-1) = 10 min., corresponding to the isothermal stage holding time. 
 

6. Conclusion 
The analysis of all data taken into account leads to the following conclusions: 

a) the equation of the determined mathematical model shows that, in the variation ranges chosen for 
the analysed factors, their influences on the studied process are different, as follows: 
- the factor z1 (b1 = 20.125) corresponding to the austenitizing holding temperature has the 
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strongest influence on the process; 
- the factor z3 (b3 = -8.375) corresponding to the isothermal stage holding time influences the 

process to a lower extent; 
- the factor z2 (b2 = -43.4583) corresponding to the isothermal stage holding temperature has the 

weakest influence on the process; 
(b) the experimental dispersions, verified using the Cochran criterion, are homogeneous; 
(c) statistically, all “bi” coefficients of the mathematical model obtained differ from zero and, thus, they 

are part of the mathematical model obtained, and the verification was performed using the Student 
criterion; 

(d) the optimal (maximum) hardness of the analysed material (432.8333 HB) was obtained for the 
designed experiment no.7; 

(e) the correlation between the experimental data and the calculated mathematical model was verified 
and the verification was based on the Fischer criterion. 
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