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Abstract 
This article aims to analyze bioplastics at the global level and provide information about alternative bioplastics 
instead of traditional plastics. By examining the literature studies, the relationship of bioplastics with plastics, their 
environmental effects, advantages, and disadvantages are compared. Plastic wastes cause toxic effects on soils due 
to chemical degradation and turn into microplastics that easily enter the environment through primary and 
secondary sources. Accordingly, biobased and biodegradable bioplastics emerge as potential solutions. There are 
norms and standards with different parameters to measure biodegradability. The leading standardization 
organizations are ISO (International Organization for Standardization), CEN (European Committee for 
Standardization), and ASTM (American Society for Testing and Materials). The literature indicates high 
degradation rates (>90%) for bioplastics in compost, soil, and seawater environments. The studies suggest that 
bioplastics are more advantageous than conventional plastics because of greenhouse gas emissions. On the 
contrary, they strongly impact the environment by acidification of soil and eutrophication. This article discusses 
plastic and bioplastic properties, the environmental impacts of plastics, biodegradability and compostability 
standards, and life cycle analysis. 
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1. Introduction 
The European Green Consensus is the action plan outlined by the European Commission to tackle the 

ever-growing environmental and climate challenges facing our society. This plan aims to transform the 
European Union into a modern society with zero net greenhouse gas emissions and economic growth 
decoupled from resource use by 2050 (European Commission, 2019). A circular economy is an approach 
that will lead to significant changes in many branches of the modern economy in a short time (Primc et 
al. 2020). In this regard, the European Union points out several urgent problems with plastic pollution 
and production, including single-use items, excessive packaging and waste, microplastics, and oversized 
carbon footprints (European Commission, 2020). 

Plastics, whose production dates back to the 1950s, have become necessary materials used in various 
daily applications (Geyer et al., 2017). The plastics industry has grown exponentially because of the 
diversity of plastics available and its relatively cheap petroleum production (World Economic Forum, 
2016). Plastics are expected to contribute to daily life socially and environmentally, and their use will 
increase worldwide, including in developing countries. This increase is due to the "Future of 
Petrochemicals" (International Energy Agency, 2018) report and "The Essential Role of Chemicals: 17 
Case Studies" (International Council of Chemical Associations, 2017) report. Plastics are used 
extensively in various industrial sectors, including packaging, construction, automotive, electronics, 
textiles, household goods, and toys, with current global production of approximately 350 million tons 
per year (t/year) (Plastics Europe, 2018). Binders, fillers, colors, plasticizers, and other additives make 
up most of them (White & Reid, 2018). These synthetic materials can be molded or sculpted with 
chemical additions and an organic polymer matrix (Baur et al., 2019). Additives aid in preserving and 
enhancing particular qualities (Andrews, 2010; Zweifel et al. 2009). Polyethylene (PE) is widely used in 
the production of plastic materials. PE, also defined as an ethylene polymer, is produced at high 

mailto:mkarahan@uludag.edu.tr
mailto:ali.ari@ostimteknik.edu.tr


RECENT, Vol. 24, no. 1(69), 2023 

30 

temperatures and pressure depending on the desired properties of the final product. PE is resistant to 
acids, water, alkali, and most organic solvents (Ronca, 2017). Lightness, expandability, flexibility, and 
resistance to microbial or any other natural degradation are just a few of the features that make plastic 
indispensable (Katiyar et al., 2014). The disposable concept, which has become increasingly widespread 
worldwide since the 80s, is the result of linear economy concepts. The most considerable side effect of 
the wide use of plastics is a large amount of plastic waste released into the environment (Schneiderman 
& Hillmyer, 2017). The persistence of plastic materials in the environment has quickly pushed the globe 
towards an overall state of unsustainability due to the disturbance of ecosystems and the threat to the 
survival of many animal and plant species (Comăniță et al., 2016; Wesch et al., 2016). 

The circular economy is an economic system and production model that aims to maximize the reuse 
and recycling of resources, thus extending the life cycle of products while minimizing waste. The model 
responds to traditional and linear economics (Spierling et al., 2018). Globally, only 5% of the annual 
value of plastic produced remains in the economy, while 32% is lost in the ecosystem. Only 2% of 
plastics are recycled with the same or similar quality. This system is called a closed loop (Neufeld et al., 
2016). Even in the world's most developed regions, recycling figures need to be higher to be sustainable. 
For example, approximately 31 million tons of plastic waste are produced in the USA each year, of which 
only 6.8% can be recycled (LeBlanc, 2017). The basic principle used in recycling is the remolding of 
plastic material. It is impossible to ultimately convert the entire mass of plastic into another reusable 
form. This mass loss in the recycling process is considered a plastic emission. Another disadvantage 
encountered during recycling is the high energy consumed in the process. The durability of these 
products is severely reduced compared to the original product. However, the best way to date for plastic 
is to reduce its use and dependence (Aryan et al., 2019). 

Considerable accumulation of plastic waste in the environment is forcing many industrial areas to 
produce biodegradable plastics (Sankauskaitė et al., 2014). Therefore, the demand for new material 
solutions that are necessarily cost-effective and environmentally biodegradable is increasing (Bayer et 
al., 2014). A promising alternative to petroleum-based plastics is bioplastics, biobased plastics, or 
biopolymers derived from biomass such as corn and sugar cane as part of the biorefinery concept 
(Shogren et al., 2019). This request; emerged as a result of discussions on how plastic should progress 
in a sustainable society and circular economy, taking into account resource conversion and 
environmental protection (Kawashima et al., 2005). 

Circular economy principles need to be applied to any material flow, and bioplastic is no exception, 
as biomass is a limited resource. While general circular economy approaches are widely available, only 
a few kinds of literature exist regarding specific circular economy indicators for bioplastics. In 
particular, its biodegradability is unique to bioplastics and provides more waste treatment options 
(Spierling et al., 2018). The European Strategy highlights the need to develop more sustainable, 
innovative materials and alternative raw materials for plastics in the circular economy compared to 
petrochemical plastics (European Commission, 2018). Since most biobased plastics are a potential 
alternative to petrochemical plastics, a life cycle assessment (LCA) is required to compare 
environmental impacts accurately. In order to compare biobased plastics with petrochemical plastics, 
different plastics must have a "full" life cycle (European Commission, 2018). 

This article provides an overview of bioplastics, including definitions, polymers on the market, and 
applications. Existing standards and certificates were investigated to assess the compostability and 
biodegradability of bioplastics. The biodegradability of bioplastics and the LCA of bioplastics are 
reviewed. 

 

2. Environmental Effects of Plastics 
The vast majority of plastic products are fossil-based polymers, meaning resources derived from 

fossils are used as raw materials. Plastic is a substance obtained from its chemical transformation (Guler 
& Cobanoğlu, 1997, p. 13). Plastics can be synthesized through the polymerization of small molecules 
and are generally divided into thermoplastics and thermosets (Alauddin et al., 1995). Thermoplastics 
are linear chain macromolecules. On the other hand, thermoset plastics are formed by gradual growth 
polymerization under suitable conditions (Schick, 1992). Overall, they offer low bulk density, inertia, 
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and excellent mechanical and barrier properties, making them superior materials for many applications 
(World Economic Forum, 2016). Plastics are increasingly used in sectors such as packaging due to their 
easy processing, flexibility, lightness, and health-friendly properties. Considering the increasing energy 
costs and decreasing natural resources, plastics are preferred among packaging materials because they 
are economical. In this respect, it is expected result that the use of plastic will increase gradually 
(Erozturk, 1997). Plastic production increased from 1.5 million metric tons (mmt) in 1950 to about 335 
mmt in 2016 and 359 mmt in 2018, with an average annual growth rate of 8.7% from 1950 to 2012. 
Global plastic production is predicted to triple by 2050 (Statista, 2020). Today, plastic waste 
management, recycling, and disposal are essential issues. Depending on the quality of the recovered 
waste fraction, plastics have the potential to be recycled many times while retaining their value and 
functional properties and thus contribute significantly to the European Union's efforts towards a 
circular economy (European Commission, 2015). However, most plastics (about 70%) in the USA are 
now dumped in landfills or incinerated for energy recovery (Plastics Europe, 2017). 

Vogt et al. (2021) argued that low recycling rates result from various economic and technical 
challenges that do not encourage recycling. Due to the generally poor miscibility of polymer blends, 
efficient waste separation is critical to the quality of products from mechanical recycling (Vogt et al., 
2021). In principle, thermoplastic plastics are easily recycled, but the process is more demanding. The 
innovation and increasing complexity of plastic-containing products are evolving faster than recycling 
facilities and systems can adapt, increasing the challenge of collecting and sorting post-consumer plastic 
waste (Bennett & Alexandridis, 2021). Most plastic products are manufactured from a formulation 
containing additives such as colorants, dyes, fillers, UV protectors, fire retardants, supplements, and 
plasticizers (Vogt et al., 2021). The presence of these additives means that they are only suitable for 
some recycling applications. Additionally, mechanical recycling processes break down plastics before 
remelting them, which means polymer chains are shortened. Unlike metals, which are essentially 
endlessly recyclable, shredding degrades quality with each recycling, and over time, plastic becomes 
non-recyclable. This problem is exacerbated in the developing world, where infrastructure to collect 
and sort plastic waste is often inadequate or unavailable (Browning et al., 2021). In addition, 
thermosetting plastics such as polyesters, polyurethanes, silicones, and epoxy cannot be remelted and 
remolded after being shaped due to their crosslinked structure (Seay & Ternes, 2022). In addition to the 
technical challenges, the economic challenges of conventional recycling are also significant. Only pure 
waste streams, such as polyethylene terephthalate and high-density polyethylene bottles, are 
commercially recycled for post-consumer plastic. In contrast, potentially recyclable plastics such as 
polystyrene, polypropylene, polyethylene films, and mixed polyolefins are generally disposed of 
(Larrain et al., 2021). In addition, low oil prices are also affecting the recycling market by reducing the 
cost of virgin resin. The need for policies to increase the demand for recycled products, such as imposing 
minimum recycled content targets, is therefore critical to the economic viability of recycling operations 
(Larrain et al., 2021). 

Recycling rates are low (14%) in plastic packaging on a global scale, so plastics tend to accumulate 
(Hahladakis & Iacovidou, 2018). To overcome this problem of waste accumulation, the European 
strategy for plastics in the circular economy draws attention to the policies surrounding the sustainable 
development of industrial production (European Commission, 2018; Geissdoerfer et al., 2017). Since 
these developments place a serious burden on environmental factors, it is essential to examine the 
effects of plastic products and wastes on human health and the environment in more depth (Nagy et al., 
2016). The wide variety of plastic products mainly determines the diversity of plastic pollution. 
Thousands of plastic products are demanded in the consumer market daily. For example, the most used 
plastics in the market; PE (polyethylene), PP (polypropylene), PVC (polyvinyl chloride), PET 
(polyethylene terephthalate), and PS (polystyrene) (Bond et al., 2018). It has been documented that 
plastics can enter aquatic, terrestrial and atmospheric systems directly or indirectly through different 
means, such as wastewater treatment plants, domestic sewage, landfills, mismanaged plastic waste, 
agricultural activities, and even urban dust (Law 2017; Ziajahromi et al., 2017; Windsor et al., 2019; Bai 
& Li, 2020). The non-biodegradability of plastics and improper waste management poses many 
environmental hazards in terms of safety; can cause the clogging of sewers in cities and other production 
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areas (Gu, 2021). Human populations are directly or indirectly linked in various ways to the distribution 
of plastic waste. Plastic additives (heavy metals, plasticizers, harmful coloring components, and 
stabilizers) leach into various aspects of the environment, causing water and soil pollution (Rahman & 
Brazel, 2004). Chlorine-containing plastics also leach toxic chemicals into the soil, which can leach into 
groundwater or a nearby body of water, causing ecosystem pollution. Trash plastic waste is another 
environmental threat when it decomposes and is released into the atmosphere as methane (CH4) and 
carbon dioxide (CO2). When plastic waste is burned openly, pollutants such as furans, polychlorinated 
biphenyls (PCBs), dioxins, and heavy metals are released into the air, causing health effects, particularly 
respiratory problems. When people come into contact with toxins used in plastic, they can also become 
infected through skin absorption (Chandegara et al., 2015). Plastics undergo abiotic and biotic 
degradation processes involving chemical, physical, and biological environmental reactions. UV 
radiation is mainly responsible for the initiation of degradation. Many advanced technologies have been 
developed to characterize the degradation of plastics. Decomposition causes oxidation and chain 
scission of plastic polymers, forming low molecular weight degradation products and causing changes 
in physicochemical and mechanical properties. The deterioration in tensile strength and shear strength 
as a result of deterioration causes the plastics to break down, and small plastic debris can be formed 
with the help of external forces. Further degradation of plastics can produce degradation products of 
sufficiently low molecular weight that can be assimilated and mineralized by microorganisms. In the 
natural environment, the degradation of conventional plastics is prolonged and is affected by their 
properties and the conditions of the exposed environment. The degradation of plastics is critical in 
determining their fate and environmental impact (Zhang et al., 2021). Due to chemical breakdown, 
plastic waste is poisonous to soils and easily enters the environment through primary and secondary 
sources as microplastics (e.g., Figure 1).  

 

 
Fig. 1. Sources and interactions of microplastics in the aquatic environment (FanpLESStic-sea 2019) 

 
Recent years have seen an increase in the study on environmental contamination focusing on 

microplastics in soil, air, and particularly aquatic habitats (Pannetier et al., 2019). Microplastics pose a 
danger to the health of humans and other living things due to their properties such as absorbing toxic 
pollutants and being swallowed by living things, not being able to be filtered in wastewater treatment 
plants, are easily transported in the atmosphere and water resources, and having a very long extinction 
period in nature (Yurtsever, 2018, p. 184). Microplastics are found in the soils of many terrestrial 
ecosystems (Zhang & Liu, 2018), including agricultural areas (Piehl et al., 2018), cities and industrialized 
areas (Fuller & Gautam, 2016), as well as highly remote areas (Scheurer & Bigalke, 2018). The 
accumulation of plastics, especially in the sea, causes severe effects on the ecosystem (Gregory, 2009). 
Between 2010 and 2025, one hundred million tons of plastic waste is expected to enter the oceans 
(Dilkes-Hoffman et al., 2019; Jambeck et al., 2015). Plastics entering the oceans have a wide range of 
environmental and economic impacts, including the spread of invasive organisms, the disruption of 
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tourism and fishing industries, and the threat to marine organisms (Codina-García et al., 2013; 
Kedzierski et al., 2018; Moore, 2008). 

 

3. Bioplastics 
Due to the increasing human population and the demand for plastic materials, the search for 

sustainable materials is one of the main issues addressed by the Council of the European Union. 
Bioplastics are, therefore, an important research topic to overcome the limited availability of petroleum-
derived plastic (Brodhagen et al., 2017; Steinmetz et al., 2016). The European Technology Platform for 
Sustainable Chemistry estimates that by 2025, up to 30 percent of raw materials for the European 
chemical industry will come from renewable sources (SusChem, 2017). According to Bioplastics, global 
bioplastic production in 2019 was below 1% (2.43 Mt) of global plastic production. Asia accounts for 
the largest share (45%) of bioplastic production. Europe followed with 25%, but this is expected to 
increase thanks to the European Commission's commitment to transition to a circular economy. The 
most popular applications of bioplastics are for food packaging (52%), followed by textiles (10%), 
consumer goods (10%), automotive (7%), agriculture (7%), coatings and adhesives (7%), construction 
(4%) and other sectors (3%) (European Bioplastics, 2019). 

 

 
Fig. 2. The bioplastic cycle (Bhagwat et al. 2020) 

 
Bioplastic if it is biobased or made from renewable materials with the potential for biodegradability 

(Mekonnen et al., 2013). The best-known properties of bioplastics are mainly mechanical and 
thermoforming properties, gas and water vapor permeability, and transparency (Huang et al., 2004). Its 
main advantages are; potentially lower carbon footprint, lower energy costs in production, no use of 
scarce oil, and biodegradability are the prevention of accumulation in landfills using bioplastics (Chen 
et al., 2014). In addition, it has disadvantages such as high production costs, workability with shared 
technologies, lack of technical knowledge, small market volume, and market redesign (Di Bartolo et al., 
2021). It is widely known that bioplastic materials may outperform traditional synthetic plastics due to 
their inherent properties (Plastics Europe, 2018). To date, relatively few biobased products have been 
produced compared to conventional chemicals. 

As seen in Fig. 2, bioplastics are generally polymers synthesized from renewable resources such as 
biodegradable (Flieger et al., 2003) produced from renewable natural resources such as 
polysaccharides, lipids, proteins, plant/microbic polyesters, or polyesters produced from bioderived 
monomers (Briassoulis, 2004; Nampoothiri et al., 2010). These plastics are environmentally friendly 
and a safer option than petroleum-based plastics. Biodegradable plastics decompose entirely into 
carbon dioxide, water, and inorganic compounds (Shah, 2021). The biodegradability of bioplastic 
materials is highly affected by their physical and chemical structure. At the same time, the 
environmental conditions in which they are placed play an essential role in their biodegradability 
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(Emadian et al., 2017). The material's biodegradability is primarily governed by its polymer structure 
(Leja & Lewandowicz, 2010). Most polymer structures have a hetero-chain or carbon basis. Hetero-
chain polymers include polysaccharides, proteins, plant-derived polymers such as PLA and PBS, and 
microbially synthesized polymers such as PHVB. Hetero-chain polymers degrade via enzyme-mediated 
or non-enzyme-mediated hydrolysis, which can be affected by factors such as thickness, chemical bonds, 
copolymer type, water uptake, and morphology. Carbon-based polymers such as natural rubber and 
lignin degrade through oxidation or enzyme-mediated (oxidative) biodegradation, which can take years 
and is slower than hetero-chain polymers (Sudhakar et al., 2012). Most of the so-called biodegradable 
materials are biocomposites, usually formed by mixing other biodegradable materials such as potato 
peel waste fermentation residue (Wei et al., 2015), fruit branch fibers (Harmaen et al., 2015) to increase 
their biodegradability. Biotechnology of reinforced plastics or composite materials Production with 
degradable supplements and resins has also become a trendy topic in recent years (Jabbar et al., 2016). 
The use of natural fibers, especially fibers such as jute, flax, and hemp, instead of glass fiber and carbon 
fiber, which are widely used as reinforcing materials and require very high energy use in production, is 
increasing (Koyuncu et al., 2016). 

Along with such fibers, resins and polymers obtained from plant products such as corn and olive are 
also used to produce biodegradable composites (Liu et al., 2019). Banana fibers used as reinforcing 
materials offer several advantages due to their environmental friendliness, relatively low density, and 
abundance (Li et al., 2008). Natural fiber-reinforced scientists and engineers have widely researched 
composites in different industries for their environmentally friendly properties, such as 
biodegradability, which can significantly reduce carbon footprint. Even advanced industrial sectors such 
as aerospace and automotive have tried using natural fiber-reinforced composites in critical 
applications to promote sustainable technologies. In the last few years, interest in using natural fibers 
as reinforcements in polymers has increased significantly. Natural fibers are strong, light, relatively 
inexpensive, and biodegradable (Kopparthy & Netravali, 2021). 

Biobased product lines reduce adverse environmental and social impacts associated with petroleum 
feedstock (O'Rourke & Connolly, 2003) but still have significant environmental impacts. Further support 
for the biobased sector is also recognized as a way to enable circularity in the industry. However, 
challenges are also noted in the sourcing, labeling, and use of biobased, biodegradable, and compostable 
plastics (European Commission, 2020). Recently, the biodegradation of different bioplastics has been 
studied by numerous studies in the literature. Biopolymers are of great interest in the market as they 
meet the basic requirements of life cycle environmental impacts or life cycle assessments (Hottle et al., 
2013). Proportionally, production in low quantities compared to petroleum-based plastics is a factor 
that increases the cost. Costs may decrease when the number of production increases. Recently, studies 
have focused on reducing production costs and improving bioplastics' mechanical and physical 
properties. There are many studies on the biodegradability of different bioplastics in different 
environments for specific periods. Bioplastics' ability to biodegrade under conditions found in natural 
environments is an essential property. Biodegradability depends on the chosen medium and may differ 
from one medium to another (Karamanlıoglu et al., 2017). Therefore, environmental conditions affect 
the decomposition rate (Endres, 2017; Nakasaki et al., 2006) and the test conditions used (Massardier-
Nageotte et al., 2006). Therefore, the type of biodegradable polymer (Nakasaki et al., 2006) should be 
chosen correctly. Aerobic compost is the most widely studied degradation media and a standard waste 
treatment option (Ruggero et al., 2019). Other media of interest are soil, freshwater, or seawater (Shruti 
& Kutralam-Muniasamy, 2019). However, bioplastic degradation occurs only under certain conditions, 
and generally, the biodegradation process is prolonged under environmental conditions (Shruti & 
Kutralam-Muniasamy, 2019). Table 1 shows PLA in the soil in the studies reviewed. Its biodegradation 
(Palsikowski et al., 2018; Rajesh et al., 2019) was relatively low compared to its biodegradation in 
compost (Luo et al., 2019; Stloukal et al., 2015; Kale et al., 2007). High biodegradation rates (>90%) in 
soil and compost have also been detected in PHA-based bioplastics (Schröpfer et al., 2015; Boyandin et 
al., 2013; Gutierrez-Wing et al., 2011; Sintim et al., 2020). Bioplastic is expected to be highly degradable, 
and studies are carried out to accelerate biodegradation by bacteria that will provide this and fungi, 
which are known to be more resistant than bacteria (Arıkan & Bilgen, 2019, p. 294). 
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Table 1. Bioplastic degradation rates 
Bioplastic 
Type 

Degradation 
Rate % 

Type of 
environment 

Time 
(Day) 

Reference 

PLA 54% 
16% 
26.5% 

Soil 57 
180 
90 

Karamanlioglu & Robson, 2013 
Palsikowski et al., 2018 
Rajesh et al., 2019 

PHA Based 
 
 
 
 
PHB 
 
 
 
 
 
PHBV 

30-100% 
35% 
48.5% 
% 85.8 - 96.4 
26.3% 
86.7% 
32% – 31.6% 
93% 
64.3% 
%100 
98% 
40% 
18% 
10% 
95% 
35% 

Soil 14-300 
60 
280 
150 170 
10 
56 
35 
35 
180 
180 
300 
90 
30 
28 
45 

Emadian et. al., 2017 
Wu, 2014 
Gómez & Michael, 2013 
Šerá et al., 2020 
Rudnik & Briassoulis, 2011 
Rehman et al., 2015 
Thomas et al., 2020 
Volova et al., 2017 
Jain and Tiwari, 2015 
Schröpfer et al., 2015 
Boyandin et al., 2013 
Casarin et. al., 2012 
Wang et al., 2008 
Gonçalves et al. al., 2018 
Kulkarni et al., 2011 
Rani-Borges et al., 2016 

PLA 10-100% 
53% 
20% 
78.9% 
70.86% 
13% 
84% 
70% 
60% 

compost 28-90 
57 
180 
80 
90 
60 
58 
28 
30 

Emadian et. al., 2017 
Karamanlioglu et al., 2013 
Janczak et al., 2018 
Luo et al., 2019 
Stloukal et. al., 2015 
Ahn et al., 2011 
Kale et al., 2007 
Tabasi & Ajji, 2015 
Mihai et al., 2014 

PHA Based 85-99% 
79.7% 
%100 
80% 

compost 126 
110 
84-126 
28 

Sintim et. al., 2020 
Weng et al., 2011 
Gutierrez-Wing et al., 2011 
Tabasi & Ajji, 2015 

Cellulose 
acetate 
bioplastic 

44-35% compost 14 Mostafa et. al., 2015 

PLA 90% anaerobic sludge 60 Yagi et. al., 2012 
PHB 
PBHV 

83.9%±1.3% 
81.2% ± 1.7% 

anaerobic water 77 
77 

García-Depraect et al., 2022 
García-Depraect et al., 2022 

PCL 77.6% ± 2.4 anaerobic water 177 García-Depraect et al., 2022 
PHBV 
 
PHB 

85% 
97% 
>30% 
71.3% 
88-99% 

Marine 360 
200 
365 
86 
49-100 

Deroiné et. al., 2014 
Deroiné et. al., 2015 
Greene, 2012 
Ho et al., 2002 
Thellen et al., 2008 

 

4. Biodegradability and Biodegradability Standards 
Biodegradation occurs through the action of enzymes from bacteria, fungi, and algae, resulting in a 

reduction of the molar mass of the macromolecules that make up the biodegradable material (Nanda et 
al., 2010). Many studies have been conducted under different environmental conditions, such as soil, 
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compost, marine, and other aquatic environments, to investigate biodegradability. Most soil and 
compost environments have a great place due to their high microbial diversity (Anstey et al., 2014). A 
large amount of plastic waste is disposed of in landfills, which generates greenhouse gases and leachate. 
For this reason, it is thought that other solid waste management methods, such as composting or 
recycling, are preferred in the recovery of plastics. Composting is the conversion of organic matter to 
CO 2 and a soil-like substance (humus) by the activity of a mixed group of microorganisms (Kale et al., 
2007). Compostability is a subset of biodegradability, meaning that most biodegradable plastics are 
compostable (Cesaro et al., 2015). 

Since plastic wastes are also widely disposed of in soil environments, their changes and effects in this 
area are being investigated. Mainly soil environments contain a wide variety of microorganisms. This 
makes degradation more feasible than in media such as water or air. Many studies in the literature have 
investigated the biodegradability of PHA and PLA (Emadian et al., 2017). In the marine environment, 
plastic waste has been found to accumulate essentially evenly. Due to their semi-permanent stability in 
the marine ecosystem, plastic waste creates marine pollution that could potentially impact marine 
animals (Volova et al., 2007; Sekiguchi et al., 2011). These plastics persist in aquatic environments for 
hundreds of years, as low temperatures and minimal UV in the ocean cause slow degradation (Andrady, 
2015). Therefore, biodegradable polymers can be used to develop a sustainable environment in marine 
and water systems (Tosin et al., 2012). One proposed solution is to produce biodegradable plastics such 
as PHAs, which have shorter lifetimes in the marine environment. However, the time frame for the 
biodegradation of such seafood needs to be clarified (Dilkes-Hoffman et al., 2019). Understanding the 
longevity of biodegradable polymers begins with understanding the mechanisms by which 
biodegradation can occur. PHAs are biodegradable in most natural environments, including the marine 
environment, with PHA degraders under aerobic and anaerobic conditions (Jendrossek & Handrick, 
2002; Shah et al., 2008). Under aerobic conditions, the resulting products are ultimately biomass, CO2, 
and water. The products released under anaerobic conditions are biomass, CO2, methane, and water 
(Gu, 2003). Biodegradation of PHA occurs by enzyme-catalyzed surface erosion (Guérin et al., 2010; 
Laycock et al., 2017). 

According to the research that has stuck in recent years, seawater dissolution is also a consideration. 
The primary purpose of designing seawater degradation materials is to ensure that materials 
"disappear" as soon as they are thrown into seawater. From this point of view, PVA, a water-soluble 
polymer material, can meet this requirement well. PVA is not biobased but is biocompatible. It has 
excellent mechanical properties and water solubility and is obtained by the alcoholysis of polyvinyl 
acetate (Chiellini et al., 2003). The water solubility of PVA is adjusted by varying the degree of 
polymerization or alcoholysis. More importantly, compared to other synthetic water-soluble polymers, 
PVA is fully biodegradable in the presence of bacteria in wet environments such as sewage sludge (Corti 
et al., 2003; Chiellini et al., 1999) and river water (Ikejima et al., 1998). Based on these properties, PVA 
is recognized as the only biodegradable soluble polymer and has been applied in many fields, such as 
food packaging, coatings, textiles, cosmetics, and paper (Huang et al., 2019). 

Biodegradability, norms, and standards have been established about biodegradability applied to 
different materials and with different parameters in different environments. The standardization bodies 
that set the standards are mainly ISO (International Organization for Standardization), CEN (European 
Standardization Committee), and ASTM (American Testing and Materials Association). In addition, 
many national standardization bodies, such as the Australian standard (AS), the German Institute for 
Standardization (DIN), and the Japan Bioplastics Association (JBPA), have created their standards, 
adding different testing procedures for better regulation. Standardization provides benchmarks for 
desired product quality requirements and prevents false market behavior (European Bioplastics, 2022). 
Their degradation standards in compost are mainly; ASTM 6400, ISO 17088, EN 13432, DIN V 54900 
(Briassoulis et al., 2010), standards ASTM D5338, ISO 14855; EN 14046 (Table 2) and degradation 
standards in soil under aerobic composting conditions are mainly; ASTM D 5988 is ISO 17556 (Table 3). 

According to the American Society for Testing and Materials (ASTM standard D6400), compostable 
plastic is a visually non-marking plastic that biodegrades during composting to yield carbon dioxide, 
water, inorganic compounds, and biomass in a ratio consistent with other known compostable 
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materials. Thus, general criteria for a material's compostability include biodegradability, absence of 
degradation, non-toxic by-products, and visual separation from the environment (Cesaro et al., 2015). 

 
Table 2. Biodegradable plastics under aerobic composting conditions 

Current 
Versions 
of 
Standards 

Title Method Temperat
ure (°C) 

Duration 
(Month) 

Citations 

ASTM 
D5338 

Standard test method for 
determining aerobic 
biodegradation of plastic 
materials under controlled 
composting conditions 

Generated 
CO2 
Analysis 

35–58–
50–35 

6 Briassoulis et al., 2010 
Vedrtnam et al., 2019 
Kumar et al., 2019 
Kalita et al., 2021 
Sintim et al., 2019 
Kale et al., 2007 

ISO 14855 Determination of ultimate 
aerobic biodegradability of 
plastic materials under 
controlled composting 
conditions 

Generated 
CO2 
Analysis 

58 6 Briassoulis et al., 2010 
Funabashi et al., 2009 
Kunioka et al., 2007 
Funabashi et al., 2007 
Hoshino et al., 2007 

EN 14046 Evaluation of final aerobic 
biodegradability of 
packaging materials under 
packaging-controlled 
composting conditions 

Generated 
CO2 
Analysis 

58 6 Briassoulis et al., 2010 
Sikora et al., 2020 
Ciriminna & Pagliaro, 2020 
Kapanen, 2012 
Jarerat & Tokiwa, 2001 

 
Table 3. Standards for biodegradable plastics in soil 

Current 
Versions of 
Standards 

Title Method Temperature 
(°C) 

Duration 
(Month) 

Citations 

ASTM 
D5988 

Standard test method 
for determining the 
aerobic 
biodegradation of 
plastic materials in 
soil 

Produced 
CO2 

Analysis, 
Sequential 
titrations 

25 ± 2 
(Room 
temperature) 

6 Al-Salem et al., 2019 
Goel et al., 2021 
Tosin et al., 2019 
Kishk et al., 2020 
Pischedda et al., 2019 

ISO 17556 determination of final 
aerobic 
biodegradation in soil 
by measuring the 
oxygen demand or the 
amount of carbon 
dioxide emitted 

oxygen or 
Generated 
CO2 
Analysis 

20–25 6 Ardisson et al., 2014 
Briassoulis et al., 2020 
Briassoulis & Degli 
Innocenti, 2017 
Briassoulis & Mistriotis, 
2018 
Prapruddivongs et al., 
2018 

NF U52-001 agricultural and 
horticultural mulching 
products - 
requirements and test 
methods 

Generated 
CO2 
Analysis 

28 12 Deroiné et al., 2015 
González et al., 2009 
Belloncle et al., 2012 
Briassoulis & Degli 
Innocenti, 2017 

 

Three such ASTM Standard specifications mainly address biodegradable plastics in compost-type 
environments. These, ASTM D6400-04 Standard Specification for compostable plastics, ASTM D6868-
03 Standard Specification for biodegradable plastics used as coatings on paper and other compostable 
substrates, and ASTM D7081-05 Standard Specification for non-floating biodegradable plastics. Apart 
from these, the ASTM D6866 method for biobased materials has been developed to document 
bioplastic's biologically derived ingredients (European Bioplastics, 2022). In current studies (Arcos-
Hernandez et al., 2012; Chan et al., 2019; Gómez & Michel Jr., 2013), PHBV biodegradation was observed 
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using the ASTM D5988 test method, and over 30% biodegradation was detected. As evidence of the 
biodegradability of bioplastics differs between standards, the need for stronger regulation and 
compliance concerning LCA and recycling requirements is highlighted (Bhagwat et al., 2020). 

 

5. Life Cycle Analysis of Bioplastic and Plastic 
The circular economy is based on a life cycle concept in which the entire life cycle of a product or 

process is evaluated from the moment the raw materials are extracted to the end of its life, and its 
environmental, cost, social and cultural impacts are measured (Lazarevic et al., 2012). LCA means 
evaluating the entire life of the industrial product, from raw material extraction to the various stages of 
material processing, production, distribution, and use (Gironi & Piemonte, 2011; Jawahir et al., 2006). 
The ISO 14000 international standard determines LCA methodology. ISO 14040; principles and 
framework, ISO 14041; purpose, scope, and inventory analysis, ISO 14042; lifecycle impact review, ISO 
14043; lifecycle interpretation and ISO 14044; needs and directives (Özbilen et al., 2011). 

End-of-life options for plastic products have yet to be addressed in the past. Due to their extremely 
high resistance to degradation in natural environments, plastics have accumulated extensively in 
aquatic and terrestrial ecosystems (Geyer et al., 2017; Kaur et al., 2018). Conventional plastics produced 
from petroleum raw materials cause high environmental impacts from plastic production methods 
(Zheng & Suh, 2019), 4% of global CO2 emissions from plastics production (Zheng & Suh, 2019), and 
significant methane emissions due to leaks in supply. (Grubert & Brandt, 2019). To limit this trend, 
coordinated global actions are needed to reduce plastic consumption, increase reuse and recycling, and 
accelerate innovation in sustainable substitutes (Fu et al., 2019). As most biobased plastics are created 
as a potential substitute for petrochemical plastics, an accurate comparison of the environmental 
efficiency of these different plastics through LCA is crucial (Bishop et al., 2021). 

From a circular economy perspective and considering the waste management hierarchy proposed by 
the EU, the use of a refillable bottle is supported instead of any disposables. The end-of-life scenarios 
recommended by the EU are constant recycling or recovery for packaging materials as the preferred 
options compared to storage (Tamburini et al., 2021). However, recovery is only sometimes a viable 
solution. Currently, most synthetic organic materials are produced from fossil carbon raw materials 
regenerated on time scales of millions of years. Biobased alternatives are rapidly renewable in cradle-
to-cradle cycles (1-10 years), and such materials extend storage life and reduce undesirable effects from 
material persistence (Rostkowski et al., 2012). 

For life cycle analysis, the most common impact categories in the articles reviewed, excluding global 
warming potential, acidification potential, eutrophication potential, resource depletion, photochemical 
oxidant generation, ozone depletion, ecotoxicity, human toxicity, particulate matter generation, energy, 
land use, and water consumption. There is an increasing number of studies evaluating the 
environmental impacts of bioplastics and comparing biobased plastics with their petrochemical 
counterparts, emphasizing savings and trade-offs across impact categories (Pawelzik et al., 2013; 
Tsiropoulos et al., 2015; Karvinen, 2015). The literature focuses on bioplastics' energy consumption and 
global warming potential compared to petrochemical plastics (Brizga et al., 2020). However, it is limited 
to a small number of LCA studies. 

Bioplastics have been shown to save on non-renewable energy use and greenhouse gas emissions 
compared to conventional materials (Dunn et al., 2015). Globally, bioplastics can save between 241 and 
316 Mt CO2 per year by replacing 65.8% of all conventional plastics (Pawelzik et al., 2013). In a study 
considering the changes in global warming potential, acidification potential, and eutrophication 
potential impact categories, a decrease in global warming potential and an increase in acidification and 
eutrophication potential were determined using bioplastics instead of traditional plastics (Koch & 
Mihalyi, 2018). According to Piemonte & Gironi (2011), the use of bioplastics can provide significant 
energy and greenhouse gas impact savings over fossil-based plastics. Papong et al. (2014) conducted a 
comparative LCA study on environmental impact. Accordingly, the production of bioplastic bottles 
results in reductions in CO2 emissions, lower toxicity, and less demand for non-renewable energy than 
conventional plastics. Another study showed that it is possible to reduce greenhouse gas emissions by 
replacing petroleum-based plastics with bioplastics, measured using the Global Warming Potential 
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(GWP) guideline (Thelen et al., 2010; Ingrao et al., 2015). 
To use fertilizers and chemicals in the cultivation of renewable raw materials used for bioplastic 

production. Bioplastics have a substantial impact on the environment for soil acidification and 
eutrophication. In some cases, copolymers can be added to improve the bioplastic properties. Because 
copolymers were added, the mechanical performance of biopolymers was improved at the expense of 
biodegradability. However, it should be noted that the presence of non-biodegradable copolymers in 
bioplastics leads to a significant increase in energy demand and CO2 emissions (Gironi & Piemonte, 
2011). Literature studies in Table 4, generally recommend bioplastics for reducing consumption of non-
renewable resources and greenhouse gas emissions while preferring conventional plastics for impact 
indexes on acidification and eutrophication (Walker & Rothman, 2020). According to the European 
Commission, research should focus on the future impact of alternative production techniques, the most 
efficient raw materials, and determining the sustainability of bioplastics in a circular, net zero carbon 
future (European Commission, 2019). However, replacing all petrochemical plastics with bioplastics is 
currently impossible, as this results in a significant increase in land and water use (Brizga et al., 2020). 

 
Table 4. LCA findings 

Polymer LCA Findings Author 
Biobased or petrochemical 
raw materials 

Substitution of bio-based products with products 
made from petrochemical raw materials CO2 savings 
can be achieved. 

Pawelzik et al., 2013 

Bioproducts and their 
fossil-based counterparts 

Bioproducts have been replaced by their fossil-based 
counterparts, reducing cradle-to-grave greenhouse 
gas emissions from 27% to 86%. 

Dunn et al., 2015 

Bioplastics and 
conventional plastics 

A decrease in global warming potential and an 
increase in acidification and eutrophication potential 
have been found. 

Koch & Mihalyi, 2018 

PBS, PLA, and PET In energy use and the climate change categories, 
fossil-based and bio-based polymers were found to 
show very similar data ranges. In acidification, 
biobased PBS and PET are disadvantageous. 
Biobased PLA has been found to have high 
environmental impacts in ecotoxicity, biobased PET, 
and eutrophication. 

Walker & Rothman, 2020 

Biobased high-density 
polyethylene and partially 
biobased polyethylene 
terephthalate 

Biobased polymers were equal to or lower than their 
petrochemical counterparts. Petrochemical 
polymers outperform their biobased counterparts 
for human health and ecosystem quality, but the 
potential for further improvement in the 
environmental performance of biobased polymers 
remains to be explored. 

Tsiropoulos et al., 2015 

PS and PLA In the comparative evaluation related to the life cycle 
performed, the global warming potential, 
PLA (4,826 kg CO2) was lower than PS (5.11 kg CO2). 

Ingrao et al., 2015 

Fossil-based and bio-based 
polymers 

From petrochemical and bioplastics: greenhouse gas 
emissions from producing petrochemical polymer 
packaging from bioplastics are higher than 
greenhouse gas emissions. 

Brizga et al., 2020 

PLA and PET Presence of non-biodegradable copolymers in 
bioplastics leads to a significant increase in energy 
demand and CO2 emissions. 

Gironi & Piemonte, 2011 

 

Existing studies (Ingrao et al., 2015; Brizga et al., 2020; Dunn et al., 2015; Pawelzik et al., 2013) 
indicate that greenhouse gas emissions will decrease with the use of bioplastics instead of fossil-based 
plastics. However, it has been stated that the use of fossil-based plastics is advantageous in acidification 
and eutrophication potential due to pesticides, herbicides, and fertilizers used in raw material 
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production (Walker & Rothman, 2020; Koch & Mihalyi, 2018). 
 

6. Results 
The European Union works for a zero-emission economy based on circularity and sustainability. The 

demand for plastic products is increasing with the increase in our global population and living 
standards. Considering a large amount of plastic waste accumulation in the environment and the 
environmental effects of the production, processing, and disposal methods of plastic products, biobased 
plastics come to the fore as an alternative. From an environmental point of view, it is promising that 
bioplastics effectively degrade in the soil environment, unlike fossil-based plastics that accumulate in 
the soil for hundreds of years without degradation (Chamas et al., 2020). Bioplastics have the potential 
to move various industries to a circular economy. However, the use of renewable resources alone does 
not mean sustainability. Sustainability depends more on how a material is made, where it is used, and 
how it can be recycled rather than on its building block. In this context, since bioplastics are not 
permanent in the environment, they are preferred over traditional plastics as a more sustainable option. 
Standardization organizations (ISO CEN, ASTM, AS, DIN, JBPA) have established specific standards to 
measure biodegradability. Their degradation standards in compost are mainly; ASTM 6400, ISO 17088, 
EN 13432, and DIN V 54900, and soil degradation standards are mainly; ASTM D 5988 is ISO 17556. 
There are many studies on biodegradability in specific environments, particularly in soil and compost 
media. High degradation rates (>90%) are noted in the literature for PLA and PHA-based bioplastics in 
compost, soil, and seawater environments (Schröpfer et al., 2015; Boyandin et al., 2013; Gutierrez-Wing 
et al., 2011; Sintim et al., 2020; Emadian et al., 2017; Deroiné et al., 2015). 

While bioplastics generally have the essential advantages of being made from bio-based materials 
and are non-toxic, they show lower strength than conventional plastics. In some cases, additives are 
added to increase its performance, which negatively increases its environmental impact. As most 
biobased plastics are created as a potential substitute for petrochemical plastics, it is essential to 
accurately compare the environmental efficiency of these different plastics through LCA. While 
bioplastic can save in terms of fossil resources, it harms the ecosystem due to the use of different 
chemicals (pesticides, herbicides, fertilizers) to produce raw materials. While literature studies favor 
traditional plastics for impact indexes on acidification and eutrophication (Koch & Mihalyi, 2018), they 
suggest bioplastics for reducing consumption of non-renewable resources and greenhouse gas 
emissions (Koch & Mihalyi, 2018; Brizga et al., 2020; Dunn et al., 2015; Pawelzik et al., 2013). To ensure 
sustainable industry development, only bioplastics Regulations must be provided for their ability to 
decompose and their conversion to CO2 and water without the release of harmful chemicals. Durable 
bioplastics can act as a carbon sink if well integrated into the large-scale and long-term infrastructure. 
The possibility of using more bioplastic materials to improve society's lifestyle should be explored. The 
reduction in recycling costs, in particular, opens the horizon for new applications in agriculture, 
medicine, and more. The recent high prices for crude oil and the potential market for agricultural 
materials provide an economic impetus. 
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